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What is the feature of underlying quantum gravity in the equation of
states of Reissner-Nordstrom black hole ?
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Summary

The concrete form of equation of states, for laboratory system, is not determined by solely thermodynamics, but
should be determined with the other physics such as statistical mechanics, molecular dynamics and so on. In black
hole thermodynamics, the concrete form of equation of states is usually derived with some candidate theory of
quantum gravity (e.g. Euclidean quantum gravity and so on). This article deals with, as an example, the equation
of states of Reissner-Nordstrom black hole. We do not refer to any candidate theory of quantum gravity, but
introduce minimal basic requirements from which the concrete form of equation of states is derived. This implies
that those basic requirements are the items which should be justified by the underlying quantum gravity. That is,
those basic requirements are the feature of underlying quantum gravity found in the equation of states.
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1 Introduction

According to the theory of general relativity, black hole is the spacetime region governed by extremely strong
gravity. Nothing can escape from inside of black hole due to the strong gravity. Further, anything inside black
hole can not stay at a constant (proper) distance from the center of black hole region, but is going to fall to the
center, thus the black hole is an empty region [1].

In the sense of laboratory physics, we do not regard an empty region, solely, as a system which forms some
physical state such as thermal equilibrium state. However, Hawking radiation is an astonishing theoretical
prediction indicating that a thermal radiation is emitted from black hole horizon (surface of the empty black
hole region) [2]. Black hole have to be regarded as some thermal equilibrium system. Then the fact, that
Hawking radiation is the effect of quantum field theory in black hole spacetime, implies that the black hole
region is a thermal equilibrium state of underlying quantum gravity. Hence, it is expected that studying thermal
property of black hole is searching for some property of underlying quantum gravity.

Here note that, in laboratory thermodynamics, the concrete form of equation of states can not be determined
by solely thermodynamics, but should be determined with the other physics such as statistical mechanics,
molecular dynamics and so on. Then, for black holes, the concrete form of equation of states should not
be determined by solely thermodynamic property of black holes, but should be determined with underlying
quantum gravity (and statistical mechanics of long range interaction systems).

This article deals with, as an example, the equation of states of Reissner-Nordstrom black hole. We do not
refer to any candidate theory of quantum gravity, but introduce minimal basic requirements from which the
concrete form of equation of states is derived so as to match with the Hawking radiation and the so-called black
hole’s mechanical 1st and 2nd laws. This implies that those basic requirements are the minimal items which
should be justified by the underlying quantum gravity. That is, those basic requirements are the feature of
underlying quantum gravity found in the equation of states of Reissner-Nordstréom black hole.
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Figure 1: Two types of thermal equilibrium system of black hole

2 Equation of states for Reissner-Nordstrom black hole

In order to search for the basic requirements of equation of states, we need to consider a thermal equilibrium
system including black hole, since, exactly speaking, the equation of states is a relation among state variables
of thermal equilibrium states. We introduce a thermal equilibrium system of black hole proposed by York [3].
(Left panel in fig.1.) It is constructed by placing a black hole at the center of spherical cavity hollowed in heat
bath, and adjusting the temperature of heat bath to the same value with the temperature of Hawking radiation.
The Hawking radiation is completely absorbed by heat bath, and the heat bath emits a thermal radiation of
the same temperature with Hawking radiation. Then, because the energy loss of black hole due to Hawking
radiation is exactly balanced with the energy injection due to thermal radiation emitted from heat bath, the
total system composed of black hole and thermal radiation filling the cavity becomes a thermal equilibrium
system. The work and heat operate on this total system through the surface of heat bath. Since this total
system contacts with a heat bath, isothermal process is possible for this total system, but adiabatic process is
not possible.

Next, we find another type of thermal equilibrium system of black hole. (Right panel in fig.1.) It is
constructed by placing a black hole at the center of spherical mirror whose temperature is zero and which reflects
perfectly the Hawking radiation [4]. We call this mirror the cold perfect mirror. The cold perfect mirror emits
no radiation because of zero temperature, but reflects Hawking radiation without breaking thermal spectrum
of radiation. Then, since the energy loss of black hole due to Hawking radiation is exactly balanced with the
energy injection due to reflected radiation, the total system composed of black hole and thermal radiation filling
the space enclosed by mirror becomes a thermal equilibrium system . Note that, the cold perfect mirror is
regarded as a kind of heat insulating wall for this total system. Thermodynamic process possible for this total
system is adiabatic process.

These examples are the theoretical evidence for the existence of thermal equilibrium system of black hole, i.e.
the Oth law of black hole thermodynamics. Note that thermal equilibrium states of systems shown in fig.1 can
be thermally stable and unstable [3, 5]. However, thermal stability is the property which should be recognized
after the equation of states is specified. Thus, for the purpose of this article (search for basic requirements in
the derivation of equation of states of black hole), the point is the existence of thermal equilibrium states.

In this article, we make a reasonable proposal of concrete form equations of states of Reissner-Nordstrom
black hole, not of thermal radiation surrounding black hole because our main interest is in black hole. Note
that the static coordinate (ct,r,6, ) is suitable to describe these systems, since thermal equilibrium state is
static. When the back reaction of Hawking radiation to spacetime is negligible (as is usually the case because
Hawking temperature is very low), the line element of spacetime, inside of cavity or cold perfect mirror, is
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where c is the light speed, r is the areal radius, and the parameters M and () are respectively the mass and
electric charge of black hole measured in dimension of length (i.e. M := GMpy/c? and Q := GY2Qpn /c2,

TOne may worry about the Schwinger effect (spontaneous creation of charged particles in strong electric field) which decreases
the charge of black hole. In such case, let us add the charge injection which compensates the loss of black hole charge due to
Schwinger effect.



where Mpp and Qpy are the mass and electric charge in cgs-Gauss units, G is Newton’s constant). The radius

of black hole horizon is,
ry = M + \/m’ (21b)

which satisfies f(ry) = 0, where 0 < |Q] < M for the existence of black hole. Let ry be the radius at the
cold perfect mirror or surface of heat bath. To realize thermal equilibrium systems shown in fig.1, we require
r4 < rw hereafter. We call ry, the edge of our system.

The control parameters of thermodynamic system of black holef is (M, Q,ry). Since these control parameters
have the dimension of length, the basic scaling of our thermodynamic system is expressed by the scaling of length
size,

M —= MM , Q —= AQ , ry — ATy, (2.2)

where A (> 0) is the rate of scaling.

The values of control parameters, (M, @, ry ), are determined for each thermal equilibrium state of the system
shown in fig.1. However, this evidence solely can not let us decide whether these parameters themselves are
state variables or not, because state variables should satisfy some suitable properties such as the classification
into two categories, extensive and intensive variables. In order to specify state variables of black hole, we must
specify the suitable properties of state variables. Hence, in following discussions, we construct the concrete form
of equation of states of Reissner-Nordstrom black hole, with clarifying the basic requirements and properties of
state variables.

For the first, we propose the concrete form of temperature. The temperature of black hole should be the
same with that of Hawking radiation, since black hole and Hawking radiation are in thermal equilibrium. At
the edge of thermodynamic system of black hole (r = ry), the temperature of Hawking radiation should be
consistent with the gravitational redshift which Hawking radiation receives during propagating from the black
hole horizon to edge of system. Hence the temperature, Tgy, of thermal equilibrium system of black hole is

Ty = "t P 1—(Q/ry)?
27T\/fw ’ * 27’+ ’

where fy = f(ry) and k4 is the surface gravity at black hole horizon. Here, 1/1/fy is the so-called Tolman
factor expressing the gravitational redshift [6].

In order to propose the other state variables of black hole, we refer to the mass formula of black hole [7] (or
Iyer-Wald relation for Noether charge [8, 9]) for the case ry, — oo,

(2.3)

A 1
Differential form : dM = Z—; d[—;} + T d[QQ] (2.4a)
A 1
Integrated form : M = 2 e Y Q?, (2.4b)
2 4 2ry

where A := 4772 is the surface area of black hole horizon. It is usual to regard eq.(2.4a) as the limit (ry, — o)
of differential form of 1st law for black hole state variables. The points of this formula are summarized as follows:

(P1) Mass, M, in left-hand side comes from the Noether charge at spatial infinity.
(P2) Factor, k4 /(27), in right-hand side of eq.(2.4a) is Ty as ry — 00.
(P3) Factor, A, /4, in right-hand side comes from the Noether charge at horizon.

(P4) Second term in right-hand side of eq.(2.4b), TIIQQ, comes from the energy of electro-magnetic field
(infinite-volume integral of time-time component of stress-energy tensor). The contents of this term is as
follows,

(P4-1) Factor Q? is simply a constant prefactor of the infinite-volume integral.

(P4-2) Factor 1/ry is the result of infinite-volume integration.

When we consider the possibility that the system can be in non-equilibrium state, we use the term thermodynamic system.
When we emphasize that the system is in thermal equilibrium state, we use the term thermal equilibrium system.



From the point (P1), we require that the internal energy of black hole, Epy, satisfies,
Egy - M as ry — 00, (2.5)

where the limit ry, — oo is assigned, because the Noether charge at infinity is the origin of M in eq.(2.4).
From the points (P2) and (P3), the first term, (k4 /27)d[A4 /4], in right-hand side of eq.(2.4a) seems to be
the heat term. Then, we require that the entropy of black hole, Sgy, is given by

SBH = 7T7“_2~_ (: A+/4), (2.6)

which hold even for finite r, since the Noether charge at horizon seems to be independent of ry. This is the
so-called entropy-area law of single black hole, proposed originally by Bekenstein [10, 11].

From the point (P4), the second term in right-hand side of eq.(2.4a), (2ry)~'d[Q?], corresponds to the
variation of electro-magnetic energy. Therefore, it is reasonable to regard this term not as the work term but
as the “chemical” term which describes the variation of energy due to variation of amount of matter (electro-
magnetic field). Then, we require that the state variable which corresponds to “mol number”, Ngy, is given by
the “prefactor of energy integral” explained in (P4-1),

Ngu = Q°. (2.7)

This form should hold even for finite ry, since the prefactor of energy integral (a volume integral of time-time
component of stress-energy tensor at fixed time) seems to be independent of ry. And, further, we require the
state variable which corresponds to “chemical potential”, upp, satisfies,

1
UBH — ﬂ as Ty — 00, (2.8)

where the limit 7y, — oo is assigned, because the infinite-volume integral of stress-energy tensor is the origin of
the factor 1/2r; in “chemical” term of eq.(2.4a).
From the above, we can infer a peculiar property of state variables of black hole [3, 4]:

Requirement 1 (classification of black hole’s state variables) Under the basic scaling of length size such
as €q.(2.2), all state variables of black hole are classified into three categories according to scaling behavior;

o BH-extensive state variables: These state variables, @](361);) (e.g. Spu and Npyu), are scaled by the dimen-

siton of area, @Sﬁ) — )\2(1)](;;;) .

o BH-intensive state variables: These state variables, <I>](3ir11{) (e.g. T and upn), are scaled by the dimen-
ston of inverse of length, <I>](39§) — ! (ID](;;) .

o BH-energy state variables: These state variables, @gﬁe) (e.g. EBmn), are scaled by the dimension of

length, 1) 5 Al
This classification is different from that of laboratory thermodynamics. [
Here remember the classification of state variables for laboratory systems:

o Extensive variables for laboratory systems are scaled with the same dimension of system size: Under the
scaling of system size (e.g. volume for a gas in a box, area for a labor sheet) V' — aV/, the extensive
variables, X, of laboratory systems scales as X — aX.

o Intensive variables for laboratory systems are invariant under the scaling of system size.

o The energy state variables in laboratory systems is degenerated to extensive variables.



Hence, it is obvious that the classification of state variables should be modified in black hole thermodynamics.
Given the scaling behavior of BH-extensive state variables, we can not regard the three dimensional volume
fT:W dr4nr?/\/f(r) as a system size for finite r,. However, since the system size should be a BH-extensive state

variable, it is reasonable to regard the area of edge of system, 4772, as the system size [3]. Therefore, we require
that the size of thermal equilibrium system of black hole, Appy, is given by

Ay = 471'7"3,. (29)
Then, the complete set of system sizes is
Xpn = (Apnu, NBn) - (2.10)

In laboratory thermodynamics of a gas in a box, the counterpart to this Xpy is the set of volume and mol
number.

Next, let us propose the forms of internal energy, Epp, and of free energy, Fpp. Note that, in York’s
derivation of them, Euclidean quantum gravity has been used [3, 5]. However, we prefer deriving state variables
of black hole without using any existing candidate theory of quantum gravity (such as Euclidean quantum
gravity, super string theory, loop quantum gravity, causal dynamical triangulation and so on), because, as
discussed in sec.1 and previous paper [4], we expect black hole thermodynamics to be the clue to some universal
property of quantum gravity which is independent of any existing candidate of quantum gravity. Therefore, in
following discussion, we derive Epy and Fpp without using any candidate of quantum gravity.

Asin laboratory thermodynamics, we require that the internal energy is a function of entropy and system size,
Epn(Ssu, Apn, Npu), and the free energy is a function of temperature and system size, Fpu(Tsu, Asu, NBH)-
Furthermore, as in laboratory thermodynamics, we require the differential relation,

O0Fpu(T8H, ABH, NBH)

— —Spy. 2.11
Ten SpH (2.11a)

Here, transform the independent control parameters from (M, Q,ry) to (r4, @Q,ry), and regard Fpy, Tpy and
Spu as functions of these parameters. Then, eq.(2.11a) becomes

8FBH(T+7Q7TW) _ _7_‘_7,2 aTBH(T+’Q7TW)

o = —mr? o : (2.11D)

which gives,
0T
FBH(?"+,Q,7“W) — _W/T_Qt,_ aBH
T+

where a partial integral and eq.(2.3) are used, and h(Q, ) is an arbitrary function of (Q,ry). By the scaling
behavior of BH-energy state variables in requirement 1, we can set

MQ,rw) = ary + th(rg) ; (2.11d)

w

d7“+ = _7T7"-2-TBH —TwV fw + h(Q> TW) ) (211C)

where hi(z) is an arbitrary function of single argument x, and a is a constant. The term ary, can be included
into the term Qhy, but we separate them for later use. As in laboratory thermodynamics, we require the
Legendre transformation between Epyg and Fpy, which is Epyy = Fg + 13 Spu. Expressing this relation with
parameters (r4, Q,Ty), we find

Epu(ry, Q. rw) = —rwx/fw+arw+Qh1(TQ>. (2.11¢)
Then, the requirement in eq.(2.5) results in @ = 1 and a restriction on hy,
hl(g) ~0 or O(Q)E ,e>0. (2.11f)
T'w T'w

Here let us introduce the other physical requirement from the extremal black hole limit (maximal charge limit),
Q — M. Eq.(2.3) gives the limit Tgg — 0 as @ — M. This implies that thermal contact between black hole



and heat bath (or cold perfect mirror) at ry, disappears as ) — M, since temperature vanishes Ty — 0. Then,
we require that
the dependence of Egy on ry, disappears as () — M. (2.12)

By this requirement, we choose h; = 0 from eq.(2.11f). Hence, we obtain
Egn = ry (1 - \/fw) (2.13)

n(1-VE) - e (1- ). (214)

Obviously, these energies satisfy the scaling behavior of BH-energy state variables given in requirement 1.
Note that this form of internal energy (and free energy) is the same with that obtained by York’s group using
Euclidean quantum gravity [3, 5]. That is, it is not necessarily needed to refer to candidates of quantum gravity
when we search for an appropriate form of internal energy.

Next, in order to propose the form of chemical potential, ugp, we require the differential relation as in
laboratory thermodynamics,

Fgy

OEgu(SBH, ABH, NBH)
ONBH

Expressing this relation with parameters (74, @, ry), we find

1 0BEpu(ry,Q,rw) 1 1 1
S T0) Q ‘2¢f:<u‘m>‘

Obviously, upn satisfies the scaling behavior of BH-intensive state variables given in requirement BH 1. Note
that this pupp is consistent with requirement in eq.(2.8).

As for the pressure in laboratory thermodynamics, let us define the BH-extensive state variable which is
thermodynamically conjugate to the system size Appg by

= UBH - (2.15)

(2.16)

oot _O0Epu(Sem, A, Nen) 1 0Epu(ry,rw, @)
B dAgn 877w Oy
1 Ty Q* Ty
= -1 wt——<1+=5|1-2— . 2.17
8Ty TVt 27w fw { " T-Qi- < Tw ( )

Obviously, this satisfies the scaling behavior of BH-extensive state variables given in requirement BH 1. We
find a limiting behavior, cpgApn — 0 as ry, — 0o. This behavior is useful for next paragraph. (There are some
other notes on thermodynamic meaning of opy which are found in appendix B of previous paper [12]. But such
detail is not used in this paper.)

From eq.(2.3) and (2.13), we find a differential relation which is suitable as thermodynamics,

OEBu(SBH, ABH, NBH)
0SBH

= Tgy. (2.18)

Then, the differential form of 1st law is obtained,
dEBH(SBH, ABH, NBH) = TBH dSBH — 0BH dABH + 1BH ANBH - (2.19)

As ry — 00, we find that the work term vanishes, opyy dAgy — 0. Therefore, eq.(2.19) reproduces eq.(2.4a) at
the limit ry — oco. Further, from concrete forms of state variables obtained above, we find,

Epn = 2TguSeu — 20suABH + 21BHNBH - (2.20)

This reproduces eq.(2.4b) at the limit ry, — oo.

So far we have constructed the concrete examples of thermal equilibrium system of black hole shown in fig.1.
Also, we have proposed the concrete form of state variables for the system. Those state variables are regarded
as the equations of states for the thermal equilibrium system of black hole.



Remember that, exactly speaking, our thermodynamic system of black hole is composed of black hole and
matter fields of thermal radiation surrounding black hole as shown in fig.1. Therefore, thermal equilibrium state
of this system is expressed as a composite system,

(PpH, Pm), (2.21)

where &)BH is the set of independent state variables of black hole and &)m is that of matter field of radiation. Here,
one may consider that, when the radiation matter is explicitly considered, the independent control parameters
of our system are not only (M, @, ry) but also some quantity of radiation matter. However, this consideration is
not true of thermal radiation surrounding black hole, because the temperature and volume of thermal radiation,
which are the independent state variables of radiation, are determined once the values of (M, @, ) are specified.
(Temperature and volume are given respectively by the Hawking temperature and spatial volume between r
and 7y.) Hence, even when we consider the composite system of black hole and thermal radiation in cavity or
cold perfect mirror, the thermal equilibrium state (®pg, ®m) can be controlled by parameters (M, @, rw)§.
Finally, let us note a lesson which we can learn from the concrete form of free energy (2.14). As summarized
in appendix A (fig.2), for fixed system size (App, Npu), Fpu becomes single-valued function of Ty when
Apn/Npp is small, but becomes many-valued function of Ty when App/Npp is large. Then, it is found
in appendix A that thermal equilibrium states for the case of single-valued Fpp is always thermally stable
(heat capacity is positive). For this case, thermal equilibrium state is uniquely determined by state variables
(Tu, A, Npu). On the other hand, it is also found in appendix A that both stable (positive heat capacity)
and unstable (negative heat capacity) thermal equilibrium states are possible for the case of many-valued Fpy.
For this case, thermal equilibrium state is uniquely determined by not only (Tgy, Apn, Npu) but also another
state variable (e.g. entropy Spy, chemical potential upy, or the like). The latter state variable specifies whether
the thermal equilibrium state is stable or unstable. Therefore, the lesson learned from eq.(2.14) is as follows:

(L1) For a domain of (Tsn, Apn, Npu), the number of independent state variables is three, which is the same
number of independent control parameters (74, Q,ry). In this case, for given values of (T, Ay, V),
only one stable thermal equilibrium state is possible.

(L2) For the domain of (T, Apm, Npu) complementary to that in (L1), the number of independent state
variables is not three but four. In this case, for given values of (Tpn, Apm, V), stable and unstable
thermal equilibrium states are possible. These states are distinguished by another independent state
variable other than (TBH7 Agy, NBH)-

These lessens are understood as a basic property of thermal equilibrium state of black hole. Then, we can
summarize the Oth law in black hole thermodynamics as follows:

Requirement 2 (Oth law in black hole thermodynamics) To construct the notion of thermal equilibrium
state of our system, we divide this requirement into two statements:

1st statement: For ordinary matters (e.g. thermal radiation), the Oth law of ordinary thermodynamics holds,
in which the notion of heat bath, temperature, system size and thermal equilibrium state are introduced.

2nd statement: When a black hole is placed in a cavity or cold perfect mirror as shown in fig.1, the black
hole and thermal radiation surrounding black hole form a thermal equilibrium composite system. And,
there exist temperature (Hawking temperature) and system size (surface area at the edge of system and
square of charge) which determines a thermal equilibrium state of black hole as follows:

o There exists a domain of black hole temperature and system size, where the thermal equilibrium state
s uniquely determined by the temperature and system size.

o When the black hole temperature and system size is not in the domain mentioned above, the thermal
equilibrium state is uniquely determined by not only the temperature and system size but also another
state variable (e.g. entropy, or the like).

$If some matters other than radiation is included in our system, then some suitable parameter of the additional matter should
be added to the set of control parameters of our system.



These statements, especially the second statement, specify the basic property of thermal equilibrium state of black

hole. UJ

Note that the second statement in requirement 2 is based on the lessens learned from concrete form of free
energy (2.14). However, in the second statement, we have not mentioned the stability of thermal equilibrium
states, because the notion of heat capacity (or its equivalent statements) should be introduced in order to
discuss the stability of thermal equilibrium states, and the heat capacity does not appear in Oth law.

3 Conclusion

In previous section, we have constructed the concrete forms of state variables of Reissner-Nordstrém black hole,
The relation among state variables, i.e. the concrete form of equation of states, is obtained from those concrete
forms of state variables. Sec.2 is summarized as follows:

Requirement 3 (Basic requirements for equation of states) The basic requirements in the derivation of
state variables are:

(A) The classification of state variables in requirement 1

(B) Eq.(2.3): Ty = 2:\;]?

(C) Eq.(2.5): Egpy — M as ry — o0

(D) Eq.(2.6): Spg = %

(E) Eq.(2.7): Npu = Q?
1
(F) Eq.(2.8): upH — =—— aS Ty — 00
2T+

(G) Eq.(2.9): Apy = 4nr

OEBH
Ory

From these eight requirements, we can obtain the concrete form of equation of states of Reissner-Nordstrom
black hole. Then, consequently, the statement of Oth law is found as summarized in requirement 2. [

(H) Eq.(2.12): —0 as Q—>M—-0

Some of these requirements may be directly the feature of underlying quantum gravity, and the others
may be of simply the statistical property of long range interaction systems. The latter should be found in the
statistical mechanics for long range interaction systems. Hence, a comparison of black hole thermodynamics
with statistical mechanics of long range interaction system reveals which of the eight items in requirement 3 is
the statistical property of black hole as a long range interaction system. The rest items should be regarded as
the feature of underlying quantum gravity found in black hole thermodynamics of Reissner-Nordstrém black
hole.
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Figure 2: Schematic graphs of Fpy(Tsmu, Apn, Npu) for fixed Apy and Npy: It is found that the free energy
of unstable thermal equilibrium state (negative heat capacity) is always higher than that of stable thermal
equilibrium state (positive heat capacity).
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A Stabilization of thermal equilibrium state of black hole in a heat bath

In this appendix, we discuss the evolution of unstable thermal equilibrium state of thermodynamic system of
black hole in cavity (left panel in fig.1). Further in this appendix, we use the concrete forms of state variables
suggested in sec.2. Also we refer to the fact, which will be proven in next paper, that the thermal equilibrium
state of black hole system in cavity evolves towards a thermal equilibrium state of lower free energy. (This is
the fact which has already been proven for laboratory systems in an environment of constant temperature. In
next paper, this fact will be proven for thermodynamic systems of black hole.)

For complete description of thermodynamic behavior of system in the environment of constant temperature,
the free energy should be regarded as a function of temperature and system size, Fpu(Tsu, Apu, Npu). The
heat capacity at constant system size, Cpp, is defined as

0Spn(Ten, Apn, Nen) _ 0* Fn(Tin, Asn, Npn)
OTsn b OTZ,

: (A1)

Cpu :=TBH

This denotes that thermal equilibrium state is stable (i.e. Cpy > 0), if Fpy is concave with respect to Tpy (i.e.
32FBH/8T§H < 0). Also, thermal equilibrium state is unstable (i.e. Cpy < 0), if Fpy is convex with respect to
TBu (1e 62FBH/8T§H > O)

On the other hand, from the concrete forms of Tpy in eq.(2.3) and Fpy in eq.(2.14), we obtain the graph
in fig.2 which shows the behavior of Fpu(Tpu, Apn, Npu) with respect to Tpy. From this graph and defini-
tion (A.1), we find that the free energy of unstable thermal equilibrium state (negative heat capacity) is always
higher than that of stable thermal equilibrium state (positive heat capacity). Hence, because the system evolves
to a thermal equilibrium state of lower free energy in the environment of constant temperature, an unstable
thermal equilibrium state settles down to a stable thermal equilibrium state. This stabilization is shown in
right panel in fig.2 by the arrow pointing downwards.
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