電界放射型中速電子回折装置の開発

Development of Medium-Energy Electron Diffraction Apparatus Equipped with Field Emission Electron Gun

堀尾吉已* 田代将人**

Yoshimi Horio Masahito Tashiro

Summary

A new medium-energy electron diffraction (MEED) apparatus equipped with a field emission (FE) type electron source has been developed, which is named FE-MEED. The curvature of used tungsten tip for field emission was formed less than 100 nm so that the electrons can be emitted at the critical voltage of about 1 kV. The emitted electron beam was focused on the sample surface by a hand-made magnetic lens. Spherical screen combined with retarding grids was used for the observation of FE-MEED pattern. Si(001)2x1 surface was used as a sample. The FE-MEED patterns clearly showed not only the diffraction spots but also the Kikuchi patterns for the first time.

キーワード:中速電子回折、電界放射、シリコン **Keywords**: medium-energy electron diffraction, field emission, silicon

1. はじめに

電子デバイスは益々、微小サイズに向かって研究開 発が進行している。電子デバイスの形成はもはや原子 レベルで構築する段階であり、微細かつ高機能性を有 する材料を開発することが求められている。そのため にはデバイス形成技術のみならず、原子レベルでの構 造評価も必要となる。原子配列の構造解析法としては 大別して「走査プローブ法」と「回折法」の2種類が ある。

走査プローブ法は探針を用いるため局所領域の構造 解析には極めて有効だが、デバイス形成の"その場観 察"には適さない。一方、回折法、例えば反射電子回 折法は薄膜成長の"その場観察"は可能だが、一般的 なビーム径である数百µm 程度の電子線を用いれば、 そのビーム照射領域の平均的な構造情報となり、局所 領域の解析は困難である。

本研究では、局所領域の構造解析を可能とする新た な反射電子回折法として電界放射型中速電子回折 (Field Emission Medium-Energy Electron Diffraction. FE-MEED)装置の開発を行った。回折装置の電子源と して一般に用いられている熱電子型電子銃は、フィラ メント先端からの電子の放出領域が数百µm 程度ある ため、レンズ系で集束させても理論的にはその程度の ビーム径となる。そこで本研究では、熱電子の代わり に曲率半径が 100nm 程度のタングステン(W) 尖針を 用い、針先の微小領域から放出される電界放射電子を 電子源として用いる。W(110)ファセット面を有する針 先から放出される電子線の開き角は過去の研究からお よそ数十度程度あることが分かっている。そこで、ま ず針先から放出される電界放射電子を集束させるため の電子レンズの実験を行ったので報告する。電界放射

* 電気電子工学科

** 工学研究科電気·電子工学専攻

電子は、輝度が高く、コヒーレンスの良い電子源であ る。この電子線をレンズで集束し、サブミクロン程度 のビーム径の電子銃の試作を行った。本電子銃を従来 の熱電子型(thermal emission type)電子銃と区別し、電 界放射型(field emission type) 電子銃と呼ぶが、これに より局所領域の電子回折図形の観察を目指すことが本 研究の目的である。

本研究では、電界放射のために尖針に印加する電圧 Voを 1kV 程度に設定し、これをそのまま電子ビームの 加速電圧として使用する。すなわち、入射電子のエネ ルギーは1keV程度の中速領域の電子エネルギーに相当 するため中速電子回折と呼ぶ。未だ予備実験の段階で はあるが、本装置を用いて Si(111)7x7 表面および Si(001)2x1 表面に対して、実験観察に成功した。ここで は後者の表面についての観察結果を最後に報告する。

2. 電界放射の基礎実験

W線(Φ0.15)の先端は電解研磨により尖らせ、そこ に負の高電圧を印加すれば電界放射電子線を発生させ ることができる。通常の多結晶のW線の尖針は、超高 真空内での加熱による清浄化の過程で先端は(110)フ アセット面が、そしてそれを取り囲む{111}および{100} ファセット面が形成されることが知られている。これ らのファセット面の中で(110)面の仕事関数が最も大 きく (5.85eV)、{111} および {100} 面のそれは比較的 小さい(それぞれ 4.41eV と 4.82eV) ことから、電界放 射電子線は主に {111} および {100} ファセット面から 放出し、4方向に分離することを既に確認している。以 下に電界放射に必要な印加電圧(臨界電圧)と電界強 度に関する基礎的実験から報告する。

2.1 電界放射が生じる臨界電圧

尖針先端の曲率半径に対して、電界放射が始まる臨 界電圧(ここでは電界放射電子が蛍光スクリーン上に 輝点を生むことが確認できる電圧とする。)をまず調べ た。図 1(a)に示すように金属内の自由電子が仕事関数の 壁により内部に閉じ込められている状態から、図 1(b)

に示すように負の印加電圧により真空の電位が押し曲 げられて急激な傾斜に変化する状況を考える。印加電 圧の増大とともに、金属内のフェルミ準位近傍の電子 は真空と隔てる仕事関数の壁の厚さが1nm 程度以下と なるとトンネル効果により真空中に染み出ることが確 率的に可能となり、電界放射電子が生まれる。この電 子は電位の斜面方向(電界方向)に向かって加速する ため、印加電圧による電気的エネルギーは全て運動エ ネルギーに変化する。

先端の曲率半径が 110Åから 3000Åまでの 5本の W 尖針を作製し、それぞれの尖針に対する臨界電圧を求 めた結果を図2に示す。この図から臨界電圧は尖針の 曲率半径とほぼ比例関係を示すことが伺える。

depending on tip curvature.

図 3 のように曲率半径aの尖針先端を半径aの金属球 で置き換えて、尖針先端の電界強度Eaを求める。この 金属球に電荷0が帯電しているとき、ガウスの法則から

$$E_{a} = \frac{Q}{4\pi\epsilon_{0}a^{2}} . \quad (1)$$

また、金属球表面の電位V_aは
$$V_{a} = -\int_{\infty}^{a} E dr = \frac{Q}{4\pi\epsilon_{0}a} . \quad (2)$$

(1),(2)より
$$E_{a} = \frac{V_{a}}{q} \quad (3)$$

(3)

Fig. 3 Tip shape.

として求めることができる。

ここでは尖針先端を球と仮定したが、尖針先端近傍 の円錐形状も含めて計算すると一般に尖針先端の電界 強度Eaは印加電圧Vaに対して式(3)の 1/5 程度となるこ とが知られており¹⁾、

$$E_a \cong \frac{V_a}{5a} \qquad (4)$$

と表すことができる。

この式(4)を用いて、図2の実験データからW尖針表 面の電界強度を求めた結果を図 4 に示す。この図から 電界放射が始まる尖針先端の電界強度は先端の曲率半 径に因らずほぼ一定値であることが伺える。すなわち、 約 3x10⁹ [V/m]の電界強度を与えることにより、金属内 電子のトンネル現象が生じ、電界放射が始まることが わかる。Wの平均的仕事関数の値 4.5eV を用いれば、 図 1(b)に示される仕事関数の壁の厚さは 1.5nm と算出 され(フェルミエネルギーの電子に対して)、トンネル 効果の出現可能な状況が形成されることがわかる。

2.2 電界放射電子線の収束実験

W 尖針から電界放射する電子線は既に述べたように 先端の(110)ファセット面を取り巻く{111}および{100} ファセット面から放出するため、放出領域は極めて小 さいが、4つに分裂した拡がりのある電子線となる。そ こで静電レンズおよび磁場レンズを作製し、それらの 収束の様子を観察した。

2.1.1 静電レンズによる収束

ここでは、熱電子銃からの電子線を図 5 のように、 デフォーカスにした状態でアルミ製の円筒形状の静電 レンズ(幅 10mm、内径 φ 19mm)に透過させた。

入射電子エネルギーは 3keV に固定し、静電レンズに 印加するレンズ電圧 V_L を 0Vから-160Vまで変化させ たときのスクリーンに映る像 (影)の変化を観察した。 その結果の一部を図 6 に示す。

Fig. 5 Experimental setup for the cylindrical lens.

図 6 からレンズ電圧 V_Lの増加とともに円筒リングの 円形状の影の厚みが増加する様子が伺える。その影の 内径 d_A と外径 d_Bの変化を図 7 にまとめた。図 7 から外 径 d_B は V_Lの増加とともほぼ直線的に増大するが、内径 d_A は大きな変化ではないが、僅かづつ縮小する様子が わかる。

Fig. 6 Shadow on screen for (a) VI=OV, (b) VL=-80V and (c) VL=-160V.

Fig. 7 Diameters of inner (d_A) and outer (d_B) shadow rings depending on lens voltage.

この理由としては図 8 に示すように円筒形の静電レ ンズ周りの電位分布を考えれば理解できる。すなわち、 電位の変化は、円筒内部よりも円筒外部の方が大きい ため、外部を通過する電子はその軌道を大きく曲げら れ、発散する。一方、内部を通過する電子は僅かに軌 道を曲げて収束する方向に向かうものと考えられる。

Fig. 8 Potential distribution around electrostatic lens

ここで要求するレンズ効果は、内径 d_Aを絞り込み、 最終的には点状にすることであるが、-160V程度の電圧 ではとても点状に収束させることは無理であることが 伺える。ここには載せていないが、加速電圧 2keV の電 子線に対して V_Lを-1.8kV 程度印加することで点状に収 束することを確認した。すなわち、電子線の加速電圧 とほぼ同程度の負電圧が必要であることがわかった。

2.1.2 磁場レンズによる収束

次に、磁場レンズによる電子線の収束の様子を観察 するため、図9に示すようにコイルが巻かれたボビン の穴の中にW尖針先端を僅かに挿入し、電界放射実験 を行った。この実験ではコイルの巻き数を200とした。 用いたW尖針の曲率半径は500Åを切る程のかなり細 いものと推測され、V₀=-500Vの印加電圧で電界放射が 現れ始めた。ここでは、電子強度を稼ぐためV₀=-700V で実験を行った。コイルに流す電流(レンズ電流)I_L に対し、スクリーン上の斑点サイズの変化の様子を

Fig. 9 Experimental setup for observing the focusing effect by magnetic lens.

図 10 に示す。また、その斑点のサイズ(直径)の測定 値を図 11 のグラフにまとめた。ここでは、電子電流を 大きくとって実験を行ったため、斑点のハレーション まで含めたサイズを計測している。印加電圧を下げて 実験すれば、電界放射電子強度も減少し、斑点は更に 微小サイズになる。

Fig. 10 Focussing effect of direct beam spot by lens current I_1 .

Fig. 11 Spot size dependence on lens current I_1 .

図10から斑点は回転しながら収束してゆく様子がわ かり、図11から、700eVの電界放射電子に対してコイ ル電流 *I*_Lは1.4Aが最も収束する最適値であることがわ かる。しかしながら電子の運動エネルギーが変われば 当然のことながら、この収束条件は変化する。そこで、 同一尖針を用いて、印加電圧を-500Vから-800Vまで変 化させ、最適収束電流 *I*_Lを求めた結果を図12に示す。 図よりビームの収束条件は印加電圧の増加に対してほ ぼ直線的にレンズ電流 *I*_Lを増せばよいことがわかる。

Fig.12 Uptimum lens current \mathbf{I}_{L} for electron energy.

2.1.3 電子線の集束レンズのまとめ

以上述べたように、静電レンズ、磁場レンズと両方 の電子レンズの実験を行い、その特徴を明らかにした。 静電レンズはシンプルな機構ではあるが、電子の加速 電圧とほぼ同等な電圧を印加する必要がある。電界放 射電子は一般に1keV程度の中速電子であるため、高電 圧を印加する必要があり、放電対策などに注意が必要 となる。一方、磁場レンズではコイルに流す電流が2A を超えるとコイル全体が発熱し、コイルの絶縁破壊や 真空劣化の問題を生む。しかしながら、今回の実験で 明らかになったように、2A以下のコイル電流で十分収 束可能であることや、コイルからのガスが真空を劣化 させることはほとんどないことがわかった。このよう な結果から電界放射型電子回折装置には磁場レンズを 採用することにした。また、コイル電流をできるだけ 低くするため、以下に述べる実験ではコイルの巻き数 を 200 から 350 に増した。

3. 電界放射型中速電子回折装置の作製および実験

以上の基礎実験を経て、開発した電界放射型中速電 子回折装置の概念図を図 13 に示す。電子源として ↓0.15 のWワイヤを電界研磨して先端の曲率半径が 2200Åの尖針を用いた。電子線収束用の磁界レンズと して新たに 350 回巻きのコイルを用い、尖針をコイル の穴すれすれにセットした。試料の直上には電子線の 収束状況を確認するための水平可動式蛍光スクリーン を設置した。試料ホルダーは試料を通電加熱できるよ う電極で挟む機構になっている。更に、試料ホルダー は回転導入端子と接続されているため、試料を回転さ せることにより電子線の入射視射角をθ=0~90°まで 変化させることができる。回折図形を観察するため、 取り込み角が約 90°の球面型スクリーンを用いた。そ の内面には4枚の球面グリッドが設置され、中央2枚 のグリッドに阻止電圧 VRを印加することで、非弾性散 乱電子を排除し、バックグランド強度を低減させるこ とができる。両側の2枚のグリッドは接地し、電場の 乱れを防いでいる。また、蛍光スクリーンには後段加 速電圧 Vsを印加して電子線の発光強度を稼ぐことが可

Fig. 13 Schematic diagram of FE-MEED apparatus.

能である。真空度は理想的には 10⁻¹⁰ Torr 程度以下が望 ましいが、本装置の到達真空度は 3x10⁻⁹ Torr であった。

本装置を用いて電界放射電子を発生させる際、尖針 表面に残留ガスイオンが衝突して尖針表面に微小な突 起物が形成されたためか、 V_0 =-900V付近で電界放射が 始まり、 V_0 =-1.1kVの印加電圧では回折図形を観察する のに十分な電子強度が得られた。実験観察では V_0 = -1.1kVの印加電圧で行った。すなわち入射電子エネル ギー1.1keVの電子線を用いてMEED観察を行った。ま た、阻止電圧は V_R =-1kVに設定してできるだけコント ラストの高い条件で観察を行った。また、後段加速電 圧 V_S は 3kV に固定した。

ここでは Si(001)単結晶表面を用いて観察した結果を 紹介する。 $3x15x0.5mm^3$ に切り出された単結晶 Si(001) {n型 (Pドープ)、抵抗率 1-10 Ω cm}を試料ホルダー にセットし、超高真空まで排気した後、約 1200 \mathbb{C} の温 度で数回アニールすることにより表面の清浄化を行っ た。W 尖針についても約 500 \mathbb{C} で加熱することにより、 表面に付着した汚染ガスを予め除去した。 $V_0 = -1.1kV$ に印加した尖針からの電界放射電子を試料に照射する 前に、磁場レンズによる収束状態を可動式蛍光スクリ ーンで確認した。試料に電子線を照射した後、阻止電 圧を $V_R = -1kV$ にセットして回折図形の観察を行った。 また、回折図形の明るさや歪から判断し、試料が球面 スクリーンの中心位置にあるか確認・調整を行った。

4. Si (001) 2x1 表面からの EF-MEED 観察結果および考察

EF-MEED 実験の観察結果を図 14(a)に示し、その模写 を図 14(b)に示す。この回折図形には帯状の菊池図形と 回折斑点が観察される。電子線の入射視射角は 35°程 度と見積られる。試料表面に対して法線方向である [001]方向が回折図形の上部に現れている。それを縦・ 横に横切る{220}の菊池バンドが観察される。一方、回 折図形の下部には円弧状に並ぶ回折斑点が観察される。 これを詳細に観察すると、比較的強い斑点(黒丸)と 比較的弱い斑点(白丸)が交互に並んでいることがわ かる。これらは図 14(b)に灰色の四角で示す単位網の周 期構造であり、黒丸が基本反射(整数次反射)、白丸が 超格子反射(分数次(1/2次)反射)に対応する。すな わち、Si(001)表面は2重分域の2x1 超構造²⁾であること を示す回折図形となっている。これは低速電子回折 (LEED)や反射高速電子回折(RHEED)の回折図形と は異なる様相を呈しているが、どちらかと言えば RHEED に近い幾何学図形である。MEED 図形の詳細な

解析は別の機会に譲ることにする。

Fig. 14 (a) experimental EF-MEED pattern from Si(001) and (b) its sketch.

5. まとめ

本研究では世界的にも例を見ない電界放射型中速電 子回折(EF-MEED)装置を完成させ、Si(001)2x1 超構 造表面の観察に成功した。本装置の特徴はまず簡便で あることが挙げられる。特に電子源は電界放射電子を 利用するため尖針に負の高電圧を印加するだけで電子 線を発生できる。しかしながら、尖針の曲率半径を制 御することが求められる。-1kVの印加電圧で程よいビ ーム電流を生むには曲率半径を千Å弱にすることが求 められる。数百Åまで鋭くすると、数百 V の負の印加 電圧で十分ビーム電流が取れるため低速電子回折の領 域に入る。そのような尖針に-1kV 程度の電圧を印加す れば、針先は過度のビーム電流によるジュール熱で溶 けてしまう。また曲率半径を数千Åまで大きくすれば、 数 kV の負電圧を印加しないと電子は放出されない。同 時に、残留ガスによる針先端へのスパッタリング効果 が無視できず、針先端形状が変化すれば、ビーム電流 の不安定性が問題になる。このような観点から本実験 で用いた曲率半径と印加電圧の条件は比較的安定な中 速電子回折図形を観察するには適していると考える。

今回、開発した FE-MEED 装置の最も重要な特徴は放 出電子のビーム径がサブミクロン程度と細く絞ること ができ、局所構造の観察が可能である点である。しか しながら本実験において十分達成されていない。その 理由は回折図形を明瞭に観察するためにビーム電流を 多く取る必要があり、それによりビーム径が太くなる ためである。これを解決するためには少ないビーム電 流でも明るい回折図形が得られるようにマイクロチャ ンネルプレート (MCP) 付きの蛍光スクリーンを使用 する必要がある。これはかなり高価な装置のため今後 の課題である。

本実験で用いた尖針は多結晶 W 線であり、清浄化の ため超高真空中で加熱処理している。そのため、尖針 先端は(110)ファセット面が形成され、それを取り囲む {111}と{100}ファセット面から電子が電界放射される ため、比較的広がりのある電子線を発生させる。一方、 尖針先端方向が[111]方向となるような単結晶の W 線を 用いれば、先端は{111}ファセット面で囲まれ、{111} ファセット面から電界放射する電子は比較的広がりの 少ないビームとなることがわかっている。今後、電子 源に適したこのような単結晶 W 線も使用したい。

反射電子回折法には主としてRHEEDとLEEDがある が、MEEDの存在意義は何かと問われれば、ナノクラ スタの形態評価には特に有効ではないかという点であ る。というのは、RHEEDはナノクラスタ構造を真横か ら、LEEDは真上から眺めた構造情報が得られるが^{3,4)}、 形態を知るにはむしろ斜め上から眺めるMEEDが有効 と考えるためである。今後、形態評価の有効性につい ても検証する予定である。

謝辞

本研究の一部は物質・デバイス領域共同研究拠点に おける支援ならびに JSPS 科研費 25390085 の助成を受 けたものであり、感謝の意を表す。

参考文献

- 1) Lawrence E. Murr: *Electron and Ion Microscopy and Microanalysis, McGraw-Hill*, New York, 1970, p. 61.
- Y. Horio, Y. Takakuwa and S. Ogawa: e-J. Surf. Sci. Nanotech. 12 (2014) 380-386
- 3) 堀尾吉已:表面科学 第32卷(第6号)(2011) pp.325-330.
- 4) Y. Horio: e-J. Surf. Sci. Nanotech. 10 (2012) pp.18-21.