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Special function: Leaf function r=sleafn(l)  
(First report) 

 
Kazunori Shinohara* 

Summary 
Special function: The leaf function sleafn(l), together with some of its features, is presented. A saw-tooth wave with 

periodicity can be defined as a continuous function sleafn(l). The exponent m of the function m
n lsleaf increases when 

differential operations are conducted. These leaf functions are closely related to trigonometric functions or the elliptic function. 
The inverse trigonometric and inverse elliptic functions are represented by 

21 x
dt and

41 x
dt , respectively. According 

to the Ref. [3], “mathematicians accepted the fact that 
41 x

dt  is a new function, which is one of a family called the elliptic 

integrals”. On the other hand, we have not discussed the higher order of the variable x, such as the inverse functions: 

61 x
dt , 

81 x
dt , and 

1001 x
dt  etc.  

 This paper presents a new special function, the leaf function, based on these inverse integral functions. Compared to the 
waves or curves produced by both the trigonometric functions and the elliptic function, different waves or curves with 
periodicity can be produced by using the leaf function.  

 
Keywords Leaf function, Leaf curve, Jacobi elliptic functions, Elliptic integrals, Lemniscate, Ordinary 
differential equation, Square root of polynomial 

1 Introduction 

In this paper, variables are always real numbers. Complex 
numbers are not considered. We discuss the following 
ordinary differential equation (ODE): 
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The variable r(l) represents the function with respect to the 
variable l. Equations (2) and (3) represent the initial 

conditions of the ODE. The number n represents a natural 
number (n=1,2,3,  ). Ordinary differential equation (1) has 
interesting properties and can be solved by using numerical 
simulation techniques. In the graph, variables r and l are 
represented by the vertical and horizontal axes, respectively. 
With respect to any natural number n in Eq. (1), the graph 
shows various waves with periodicity.  
In the case of n=1 in Eq.(1), we can obtain trigonometric 

functions (such as r(l)=sin(l) or r(l)=cos(l) etc. ) as solutions 
of this equation. In the case of n=2 in Eq. (1), we can obtain 
the following: 
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Differentiating the function r generally leads to a decrease in 
the index n of the function r. Therefore, it is difficult to 
describe the function r by using elementary functions. As 
described later, in the case of n=2, Eq. (1) is closely related 
with elliptic function and integration. In the case of n=3, to 
the best of our knowledge, the following equation has not 
been discussed [1]-[10]: 
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Using the graph or numerical analysis, the relation between 

the geometry and equation (1) is described for Eq. (1). As an 
application, the present paper deals with n=1,2,3,4,5 and 
100. The leaf function sleafn(l) satisfied with Eq. (1) - (3) is 
presented. 

2 Symbols 

The symbols used in the paper are as follows: 
 
n: Natural number ( n=1,2,3,  ). In the paper, it is named 
as basis. 
r: Distance between the origin and the point on the curve 
 

022 yxr  (6) 

 
As described below, the negative variable r has to be defined 
in Eq. (1). 
:   The variable represents the angle. In this paper, the 

unit is radian. Counter-clockwise is positive. Clockwise is 
negative. 
l:    Arc length on a leaf curve 
 
Numerical values are rounded off to five decimal places, 

and calculated with a precision of up to four digits. 

3 Leaf function 

3.1  Elliptic function [1] 
The incomplete elliptic integral of the first kind l is defined 

as: 
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where the parameter k is the modulus of the elliptic integral. 
The inverse elliptic function arcsn(r,k) is defined as follows: 
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Therefore, the following is obtained: 
 

klsnr ,  (9) 

 
3.2  Leaf curve ( x - y plane) 

The leaf curve is defined as follows: 
 

)0(,3,2,1sin rnnr n  (10) 
 
A point on the graph of Eq. (10) starts at the origin. As the 

angle  increases, the point moves farther away from the 
origin. After reaching r=1.0 (the distance between the point 
and the origin), the point returns to the origin. In the graph, 
the horizontal axis and the vertical axis are set to represent x 
and y, respectively. These curves on the graph resemble a 
leaf shape. Therefore, these curves are defined as the leaf 
curve. 
The leaf curve of n=1 is shown in Fig.1. In this case, the 

leaf curve represents a circle. In this paper, the curves are 
defined as one positive leaf curve. The reason as to why in 
one leaf curve is defined as positive, is described later. The 
leaf curve of n=2 is shown in Fig.2. This leaf curve 
represents the lemniscate with a slope of 45 degrees. The 
leaf curve (sleafn(l)) and the straight line (y=tan( /4)×x) 
intersect at a point, which takes the maximum value r = 1. 
The leaf curves of n=3, 4, 5, and 100 are shown in Figs. 

3-6, respectively. The graphs of these curves are described as 
three positive leaf curve, four positive leaf curve, five 
positive leaf curve, and hundred positive leaf curve, 
respectively. The leaf curve and the straight line 
y=tan( /2n)×x intersect at a point, which takes the 
maximum value r = 1. The parameter n represents the 
natural number in Eq. (10). As the parameter n increases, the 
number of leaves increases in the graph. 
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Fig. 1  One positive leaf curve 

 (Circle of center (0.0, 0.5)) 

 
Fig. 2  Two positive leaf curve  

( lemniscate with slope of 45 degrees ) 

 
Fig. 3  Three positive leaf curve 

 

 
Fig. 4  Four positive leaf curve 

 

Fig. 5  Five positive leaf curve 

 

Fig. 6  Hundred positive leaf curve 
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3.3  Leaf function r-l plane in first quadrant  
In this section, we discuss the ODE in Eq. (1). The 

parameter n represents a natural number. The variable l 
represents the length between the origin and the point on the 
leaf curve. 
For example, the cases of n=1,2,3,4,5, and 100 in Eq.(1) 

are shown in Figs.7 - 18. The distance r is the function 
consisting of the length l. 
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The function r(l) is abbreviated as r. By multiplying the 

derivative dr/dl, Eq. (12) is obtained as follows: 
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By integrating both sides in Eq. (12), the following equation 
is obtained: 
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Using the initial condition in both Eq. (2) and Eq. (3), the 
constant C1 is determined. 
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The following equation is obtained. 
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By solving the derivative dr/dl in Eq. (13), the following 
equation is obtained. 
 

nr
dl
dr 21  (16) 

 
In Fig.7, the arc length l=0 indicates the distance r=0. As 

the variable l increases within the first quadrant (0 l /2) 
in Fig.7, the variable r increases. It is natural that the 
differential dr/dl is defined as positive. Therefore, it is 

obtained as follows: 
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dl
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In this section, notice that variables r and l only occur in 

the first quadrant. As described in section 5.2, with respect 
to the range of the variable l, it is necessary to decide the 
sign of the differential dr/dl. After separating the variables, 
Eq. (16) is integrated from 0 to r and is obtained as follows: 
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The inverse function of Eq. (18) is defined as follows: 
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The following equation is obtained. 
 

lsleafr n  (20) 

 
In the case of n=1, the curve is shown in Fig. 7 and Fig. 8. 
The following equation is obtained. 
 

llsleaf sin1  (21) 
 
In the case of n=1, the arc length l is proportional to the 
radian angle. 
 
l=  (22) 

 
Therefore, Eq.(20) is as follows: 
 

sin1 lsleaf  (23) 
 
In the case of n=2, the curve is shown in Fig.9 and Fig.10 

and the following equation is obtained. 
 

ilsnlsleaf ,2  (24) 
 

The function sn represents Eq. (9). The variable i represents 
an imaginary number.  
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3.4  Relation between the geometry and the function: 
sleafn(l) 

In this section, the relation between the geometry and the 
function sleafn(l) is described. The coordinate system of the 
function sleafn(l) is shown as polar coordinates. 

 
cosrx  (25) 
sinry  (26) 

 
The functions x and y consist of both the variables  and r. 

Eq.(25) and Eq.(26) are differentiated with respect to the 
variable r to obtain the following equation. 
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In a small domain, approximation of the length l on the 

curve is shown as follows: 
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If the variable l takes an infinitely small value, the 
following equation is obtained. 
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By substituting Eq. (27) and (28) in Eq. (30), the following 
equation is obtained. 
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By differentiating Eq. (10) with respect to the variable , the 
following equation is obtained.  
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The above equation is as follows: 
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By substituting Eq. (33) in Eq. (31), the following equation 
is obtained. 
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By integrating 
nr 21

1
 from 0 to r, the following 

equation is obtained. 
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The above equation is the same as the inverse function 
defined by Eq. (17). The following equation is obtained. 
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The following equation is obtained. 
 

lsleafr n   (37) 

 
By differentiating Eq. (35) with respect to the variable r, the 
following equation is obtained.  
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The above equation is obtained as follows: 
 

－27－



nr
dl
dr 2

2

1  (39) 

 
By differentiating the above equation with respect to the 
variable l, the following equation is obtained.  
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By reason of the condition dr/dl 0, the following equation is 
obtained. 
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Using Eq. (36), the following equation is obtained. 
 

12

2

2
n

nn lsleafnlsleaf
dl
d  (42) 

 
Therefore, Eqs. (1)-(3) can be described by the leaf function. 
 

4 Numerical examination of leaf function 

In the case of n=1,2,3,4,5, and 100 in Eq.(10) and (37), the 
graph is plotted. In this section, the variables , x, and y are 
only in the first quadrant. Therefore these variables are 
satisfied as follows: 
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10 x  (44) 
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In the case of n=1, the function is as follows: 
 

sinr  (46) 
 
Using Eq. (6), Eq. (25), and Eq. (26), the relation between 
the variables r and  can be described by the relation 
between the variables x and y. It is obtained as follows:  
 

yyx 22  (47) 

 

These graphs are shown in Fig.7 and Fig.8. 

 

 

Fig.7 Leaf curve of n=1 (0 /2) 
(Vertical and horizontal axes are set to x and y, respectively) 

 

Fig.8 Leaf curve of n=1 (0 /2) 
(Vertical and horizontal axes are set to r and l, respectively) 

 
In the case of n=2, the function is as follows: 
 

2sin2r  (48) 

 
Using Eq. (6), Eq. (25), and Eq. (26), the relation between 
the variables r and  can be described by the relation 
between the variables x and y, which is obtained as follows:  
 

xyyx 2222  (49) 
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These graphs are shown in Fig.9 and Fig.10. 

 

 

Fig.9 Leaf curve of n=2 (0 /2) 
(Vertical and horizontal axes are set to y and x, respectively) 

 

Fig.10 Leaf curve of n=2 (0 /2) 
(Vertical and horizontal axes are set to r and l, respectively) 

 
In the case of n=3, the function is as follows: 
 

3sin3r  (50) 
 
Using Eq. (6), Eq. (25), and Eq. (26), the relation between 
the variables r and  can be described by the relation 
between the variables x and y, which is obtained as follows:  
 

32322 3 yyxyx  (51) 

 
These graphs are shown in Fig.11 and Fig.12. 

 

 

Fig.11 Leaf curve of n=3 (0 /3) 
(Vertical and horizontal axes are set to y and x, respectively) 

 

Fig.12 Leaf curve of n=3 (0 /3) 
(Vertical and horizontal axes are set to r and l, respectively) 

 
In the case of n=4, the function is as follows: 
 

4sin4r  (52) 
 
Using Eq. (6), Eq. (25), and Eq. (26), the relation between 
the variables r and  can be described by the relation 
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between the variables x and y, which is obtained as follows:  
 

xyyxyx 33422 44  (53) 

 
These graphs are shown in Fig.13 and Fig.14. 

 

 
Fig.13 Leaf curve of n=4 (0 /4)(Vertical and 

horizontal axes are set to y and x, respectively) 

 
Fig.14 Leaf curve of n=4 (0 /4) 

(Vertical and horizontal axes are set to r and l, respectively) 
 

In the case of n=5, the function is as follows: 
 

5sin5r  (54) 
 
Using Eq. (6), Eq. (25), and Eq. (26), the relation between 
the variables r and  can be described by the relation 
between the variables x and y, which is obtained as follows:  
 

2345522 105 xyyxyyx  (55) 

 
These graphs are shown in Fig.15 and Fig.16. 

 

 

Fig.15 Leaf curve of n=5 (0 /5) 
(Vertical and horizontal axes are set to y and x, respectively) 

 
Fig.16 Leaf curve of n=5 (0 /5) 

(Vertical and horizontal axes are set to r and l, respectively) 
 

In the case of n=100, the function is as follows: 
 

)100sin(100r  (56) 

 
These graphs are shown in Fig.17 and Fig.18. 
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Fig.17 Leaf curve of n=100 (0 /100) 

(Vertical and horizontal axes are set to y and x, respectively) 

 

Fig.18 Leaf curve of n=100 (0 /100) 
(Vertical and horizontal axes are set to r and l, respectively) 

 

5 Re-examination of leaf function 

5.1  Leaf curve  ( x – y plane) 
In earlier discussions, the leaf curve was described 

geometrically by assuming the variable r to have the range r
0. Therefore, various problems occur in the leaf function. 

In the case of an odd number n in Eq. (1), the inequality 
sin(n )<0 in Eq. (10) exist for an arbitrary variable . The 
distance r has a negative value, geometrically and a negative 
distance cannot be described using a graph, geometrically. 
On the other hand, a negative r occurs in Eq. (10).  
  In the case of an even number n, the right side rn in 
Eq.(10) consistently becomes positive, even if the left side 
sin(n ) in Eq.(10) becomes negative. Therefore, for real 
numbers, Eq.(10) is not satisfied for an arbitrary variable . 
The function (r –  function) is redefined as follows: 
 

,3,2,1sin nnr n  (57) 

 
In the above equation, the parameter n is a natural number. 

The variable r includes both positive and negative numbers. 
By replacing r by |r|, and replacing sin(n ) by | sin(n )|, the 
leaf curve can be related geometrically.  
In the case of n=1, the leaf curve is shown in Fig.19. 

Compared to Fig.1, an additional leaf is added in the range 
( 2 ), which occurs in the third and fourth quadrants. 
In Fig.19, the leaf (r 0) in the first and second quadrants is 
defined as the positive leaf. The leaf (r<0) in the third and 
fourth quadrants is defined as the negative leaf. As shown in 
Fig.19, the leaf curve is defined as consisting of one positive 
and one negative leaf. 
 In the case of n=2,3,4,5, and 100, the graphs on the x-y 
plane are shown in Fig.20-24. In this paper, the number of 
leaves is even, with positive and negative leaves arranged in 
alternating in order. The polar coordinates in Eq. (25)-(26) 
are redefined as follows: 
 

cosrx  (58) 

sinry  (59) 

 
 

Fig.19 One positive - one negative leaf curve. 
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Fig. 20 Two positive - two negative leaf curve. 

 

Fig. 21 Three positive - three negative leaf curve. 

 
Fig. 22 Four positive - four negative leaf curve. 

 
Fig. 23 Five positive - five negative leaf curve. 

 

 
Fig. 24 Hundred positive - Hundred negative leaf curve. 

 
5.2  Extended definition of leaf function 

The constants n/2 are defined as follows: 
 

),3,2,1(
21
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0 2
ndt

t
l n
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 (60) 

 
In the case of n=1, the constant 1 represents the circular 

constant . The constants n with respect to n=1,2,3,4,5, and 
100 are summarized in Table 1. Numerical values n are 
rounded off to five decimal places, and calculated with 
precision up to four digits. 
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Table 1 Values of constant n 
n n 
1 1=3.142 
2 2=2.622 
3 3=2.429 
4 4=2.327 
5 5=2.265 

100 100=2.014 
 
As shown in Fig.1 - Fig.5, the constant n geometrically 

represents the circumference length of one leaf. The leaf 
function sleafn(l) takes the constant 2× n with respect to one 
period. In the angle , the counter-clockwise direction is 
defined as positive. As the angle  increases from 0 to n /2, 
the distance increases from 0 to 1. Using Eq. (18), one input 
of the arc length l is calculated with respect to one output of 
variable r. The leaf function sleafn(l) is defined as a 
multivalued function, with one input associated with 
multiple outputs. 

First, the parameter n=2 in Eq. (35) is discussed. In the 
range 0 < /4 (domain (5) in Table 2 and Fig.20), the 
variable l is calculated as follows: 
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In the range /4 < /2 (domain (6) in Table 2 and 

Fig.20), using Eq. (16) with respect to r, the equation is 
obtained as follows: 
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In the range of /4 < /2 in Eq. (10), the distance r varies 
from r=1 to r=0, with the variable r decreasing in the range. 
The sign of the variation dr is negative; thus, the sign of the 
above equation becomes negative.  

 

241
1

4rdr
dl  (63) 

 
In the range /4 < /2, the arc length is as follows: 
 

)10(
1

1
2

1
1

1
1

1

4
2

1 4

1

0 4

rdt
t

dt
t

dt
t

l

r

r

 (64) 

 
The constant 2 is given in Table 1. In the range /2

<3 /4, the domain in the x-y graph is defined as the 
negative leaf. The sign of the variable r becomes negative. 
The variable r is increased with respect to the negative 
direction, and the sign of the variation dr becomes negative. 
On the other hand, the sign of the variation dl becomes 
positive by increasing the variable l. Therefore, the sign of 
Eq. (62) becomes negative.  
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The length l is obtained as follows: 
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In the range 3 /4 <  (domain (8) in Table 2 and 

Fig.20), the domain in the x-y graph is defined as the 
negative leaf. The sign of the variable r becomes negative. 
The variable r starts at r=-1 and finally reaches r=0. The 
variation dr becomes positive. On the other hand, the length 
l increases. The sign of the variation dl becomes positive. 
The sign of the variation dl/dr becomes positive. 
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The length l is obtained as follows: 
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In the negative case, the variable l should also be required to 
be defined. In this paper, the sign of the angle  is defined as 
positive with respect to the counter-clockwise direction. 
Corresponding to the angle , the length l is defined as 
positive. On the other hand, the sign of the angle  is defined 
as negative with respect to the clockwise direction. 
Corresponding to the angle , the length l is defined as 
negative. 
 In the range - /4 0 (domain (4) in Table 2 and Fig.20), 
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the domain in the x-y graph is defined as the negative leaf. 
The sign of the variable r becomes negative. The variable r 
starts at r=0 and finally reaches r=-1. The sign of the 
variation dr becomes negative. On the other hand, the length 
l increases with respect to the negative direction. The sign of 
the variation dl becomes negative. The sign of the variation 
dl/dr becomes positive. 
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The length l is obtained as follows: 
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In the range – /2 - /4 (domain (3) in Table 2 and 

Fig.20), the domain in the x-y graph is defined as the 
negative leaf. The sign of the variable r becomes negative. 
The variable r starts at r=-1 and finally reaches r=0. The 
sign of the variation dr becomes positive. On the other hand, 
the length l increases with respect to the negative direction. 
The sign of the variation dl becomes negative. The sign of 
the variation dl/dr becomes negative. 
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The length l is obtained as follows: 
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In the range -3 /4 - /2 (domain (2) in Table 2 and 

Fig.20), the domain in the x-y graph is defined as the 
positive leaf. The sign of the variable r becomes positive. 
The variable r starts at r=0 and finally reaches r=1. The sign 
of the variation dr becomes positive. On the other hand, the 
length l increases with respect to negative direction. The 
sign of the variation dl becomes negative. The sign of the 
variation dl/dr becomes negative. 

 

2
3

1
1

2nrdr
dl  (73) 

 

The length l is obtained as follows: 
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In the range - -3 /4 (domain (1) in Table 2 and 

Fig.20), the domain in the x-y graph is defined as the 
positive leaf. The sign of the variable r becomes positive. 
The variable r starts at r=1 and finally reaches r=0. The sign 
of the variation dr becomes negative. On the other hand, the 
length l increases with respect to the negative direction. The 
sign of the variation dl becomes negative. The sign of the 
variation dl/dr becomes positive. 
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The length l is obtained as follows: 
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In one period of both the positive and negative directions, 

the relation between the variables l and r is summarized in 
the case of n=2. For an arbitrary n, the same approach is 
applied. In the range -2 n l 2 n, the variables related to 
the function sleafn(l) are summarized in Table 2 and Fig.25. 
With respect to the arbitrary n, the relation between the 
variables r and l is summarized in Table 3. 

 
Fig. 25 Diagram of wave with respect to leaf function 

sleafn(l)  (In the figure, the numbers (1)-(8) represent the 
domain corresponding to Table 2 and Fig.20 ) 
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5.3 Waves of leaf function 
Table 3 describes two types of graph. In the first type of 

graph, the vertical and horizontal axes are set to the 
variables r and l, respectively. In the second type of graph, 
the vertical and horizontal axes are set to the variables r and 
, respectively. The curves in both the x-y graph and the 

r-l graph are described as follows: 
 

 

Fig. 26 Wave of leaf function r=sleaf1(l) (=sin(l)) 
1 period: T=6.283(=2 1)  

 
 
 

 
 
 
Table 2 Relation between variables l and r for the leaf function r=sleafn(l) with respect to one period in both the positive (0 l

2 n) and negative directions (-2 n l 0) 
Domain Range of angle  Range of length l Length l Range of 
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10  

nl
2
10  dt

t
l

r

n0 21
1  0 r 1 nr

dl
dr 21  

(6) 
nn
11

2
1

nn l
2
1  dt

t
l

r n
n 1

21
1

2
 0 r 1 nr

dl
dr 21  

(7) 
nn
1

2
31

nn l
2
3  dt

t
l

r nn

0

21
1  -1 r 0 nr

dl
dr 21  

(8) 
nn
121

2
3

nn l 2
2
3  dt

t
l

r

n
n

1 21
1

2
3  -1 r 0 nr

dl
dr 21  

(Note) For domains (1)-(8), see Fig. 20 and Fig.25 
The derivation dr/dl represents the gradient of the function: r=sleafn(l). 
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Table 3 Relation between the variables r and l of the leaf function sleafn(l) 
Range of angle  Range of length l Length l Range of 

variable r 
Derivation dr/dl 

n
m

n
m 1

2
32122

 
nn mlm

2
3222

 
dt

t
ml

r

nn 0 21
122  0 r 1 nr

dl
dr 21  

n
m

n
m 1121

2
32

 
nn mlm 12

2
32

 
dt

t
ml

r nn

1

21
1

2
32  0 r 1 nr

dl
dr 21  

n
m

n
m 1

2
12112

 
nn mlm

2
1212

 
dt

t
ml

r nn

0

21
112  -1 r 0 nr

dl
dr 21  

n
m

n
m 121

2
12

 
nn mlm 2

2
12

 
dt

t
ml

r

nn 1 21
1

2
12  -1 r 0 nr

dl
dr 21  

Note The number m represents the integer (m=0, ±1, ±2, ±3, ±4, ±5, ) 
 
 

 
Fig. 27 Wave of leaf function |r|=|sin( )|  

1 period: T= ×2  

 

Fig. 28 Wave of leaf function r=sleaf2(l)  
1 period: T=5.244(=2 2  

 

Fig. 29 Wave of leaf function |r|2=|sin(2 )|  
1 period: T= /2×2  

 

 

Fig. 30 Wave of leaf function r=sleaf3(l)  
1 period: T=4.857(=2 3)  
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Fig. 31 Wave of leaf function |r|3=|sin(3 )| 

1 period: T= /3×2  

 
Fig. 32 Wave of leaf function r=sleaf4(l)  

1 period: T=4.654(=2 4)  

 
Fig. 33 Wave of leaf function |r|4=|sin(4 )| 

1 period: T= /4×2  

 
Fig. 34 Wave of leaf function r=sleaf5(l)  

1 period: T=4.529(=2 5)  

 

Fig. 35 Wave of leaf function |r|5=|sin(5 )| 
1 period: T= /5×2  

 

Fig. 36 Wave of leaf function r=sleaf100(l) 
1 period: T=4.028(=2 100)  

 

Fig. 37 Wave of leaf function |r|100=|sin(100 )| 
1 period: T= /100×2  

 

6  Conclusion 

The second derivative d2r/dl2 is equal to r2n-1. This type of 
ODE has interesting features. Using numerical techniques, 
we can find that this ODE can produce a wave with 
periodicity. These waves are different from the waves 
obtained by trigonometric functions; therefore, a new 
function, the leaf function, is defined in this paper to 
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describe these waves. The variable of the function consists 
of the variables r and l, which represent the distance 
between the origin and the point on the leaf curve and the 
length of the leaf curve, respectively. The relation between 
the variables and the geometry is also described. In the case 
of n=1 in a leaf function, the leaf curve is geometrically 
related to a circle and the leaf function is the trigonometric 
function sin( ). In the case of n=2 in a leaf function, the 
function is the elliptical functions sn(l,i)(i: imaginary 
number). As the parameter n increases, the waveform varies 
from a sine waveform to a saw-tooth waveform. 
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