## 最小定和の素数魔方陣の検索

# Finding Magic Squares of Prime Numbers with Minimum Constant 

大石弥幸＊

Yasaki Oishi


#### Abstract

Summary A magic square including only prime numbers is the well known problem．Though some magic squares of consecutive prime numbers are seen frequently，those of non－consecutive prime numbers are rare．In this paper magic square of non－consecutive prime numbers those have minimum constants are calculated．Magic squares of high order require long time to calculate by computers．In order to shorten the time Monte Carlo Tree Search is introduced．And magic square of non－consecutive prime numbers of order 5th，6th，7th，8th and 9th are found．


キーワード：魔方陣，素数，整数，最小定和，モンテカルロ木探索
Keywords ：Magic square，Prime number，Minimum constant sum，Monte Carlo tree search

## 1．魔方陣

## 1.1 魔方陣とは

魔方陣とは 3 以上の整数 $n$ について，$n$ 行 $n$ 列の行列 に $1 \sim n^{2}$ の整数を置き，すべての行，列，および 2 つの対角線上の数の和を等しくするものである。 $n$ 行 $n$ 列の魔方陣は $n$ 次魔方陣，$n \times n$ 魔方陣などと表記される。 3次， 4 次， 5 次の魔方陣の例を図 1 に示す。同様に 6 次以上の魔方陣が存在する。

数学的には整数解に限定する多元連立方程式である。和が同じ値（定和という）だという式が $n$ 行と $n$ 列と 2対角線あるが，そのうちの 1 本は独立ではないので実質 $2 n+1$ 本の式が与えられる。これは未知数の個数 $n^{2}$ に対して不足しているため解は不定となるが， $1 \sim n^{2}$ の整数という条件のため有限個数の解が存在する。

最小次の 3 次魔方陣は古くから知られ，今でも子供向けパズルとして出題されることがある。しかし，4次以上は急に難しくなるので，歴史的に見ても多くの人 の頭を悩ませる問題となっている。それでも，解の検索に関しては，特殊な配列以外は未だに効率的なアル


| 9 | 15 | 2 | 8 |
| :---: | :---: | :---: | :---: |
| 14 | 1 | 16 | 3 |
| 7 | 6 | 11 | 10 |
| 4 | 12 | 5 | 13 |


| 9 | 1 | 24 | 13 | 18 |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 22 | 6 | 12 | 15 |
| 7 | 23 | 2 | 25 | 8 |
| 20 | 14 | 17 | 11 | 3 |
| 19 | 5 | 16 | 4 | 21 |

## 図1 魔方陣の例

ゴリズムは発見されず風潰し的な計算を行うしかない。 そのような事情から学術的な論文で魔方陣が扱われ ることも少なく，いわゆるパズル愛好家による散発的 な研究が中心となっている。そのため既存研究の範囲 もはっきり分からないことが多い。

## 1．2 魔方陣の解の総数

魔方陣の研究のなかでも大きなテーマは，解の総数 がいくつなのかである。たとえば 3 次魔方陣はちょっ とした計算で 8 通りの解を得ることができる。ただし， それらはすべて回転や裏返しで互いに同じものとなり，本質的に解は1 つだけである。

[^0]表1 魔方陣の総数

| 次数 | 解の総数 |
| :---: | :---: |
| 3 | 1 |
| 4 | 880 |
| 5 | $275,305,224$ |
| 6 | 約 $1.8 \times 10^{19}$ |

そこで魔方陣の総数を論議する場合は回転，裏返し で重なるものは 1 つと数えることを原則としている。

次数ごとの魔方陣総数は現在までに表1のように算出されている。
3 次の魔方陣は古代から知られ，解が 1 つしか存在し ないことは魔方陣が神秘的なものとされたことにも関係している。

4 次については 19 世紀までにすべて手計算で求めら れた。しかし5次の総数は1970年になってアメリカの Richard Schroepell によってはじめて確認された［1］。方法はコンピュータで時間をかけて全部の解を求めた のである。四色問題［2］がコンピュータの計算力頼りの方法で証明されたのとほぼ同時期であり，証明へのコ ンピュータの利用の是非が問われた。

同様にして 6 次魔方陣の計算が考えられたが，それ はすぐに不可能だとわかる。単純な総当り的計算では現在のスーパーコンピュータの速度でも天文学的な時間を要する。そのため正確な総数は不明であるが，筆者は1992年にランダムサンプリング（モンテカルロ法）を用いた推定値として 1800 京を発表した［3］。後の 1998年にはドイツのK．Pinn とC．Wieczerkowski もほ ぼ同じ数（ $1.775 \times 10^{19}$ ）を出している 44$]$ 。また彼らは 7次についても推定値を出しているがさらに莫大な数と なる。

コンピュータの計算速度の進歩は著しい。Shroepell が 1970 年に 5 次の全解を出すのにミニコンで 1000 時間以上かかったとある。しかし今ならスーパーコンピ ュータを使わずとも，手元の普通のパソコンで $20 \sim 30$分で計算できる（10 分という報告もある［5］）。しかし それでも 6 次以上の魔方陣にはまったく歯が立たない。

## 1． $31 \sim n^{2}$ 以外の数の魔方陣

パズル愛好家たちが基本的な魔方陣の次に考えたの は，魔方陣の中でさらに特定の条件を満たすものを探 すことであった。たとえば行，列，2対角線に加えて汎対角線（方陣の左端と右端，上端と下端がつながっ ているトーラスでの斜行周）の和も等しいもので，こ れを完全魔方陣と呼んだ。また魔方陣の中に含まれる部分方陣も行，列， 2 対角線の和が一定になるという

内包魔方陣なども求められた［6］［7］。
もう一方の拡張は使用する整数を $1 \sim n^{2}$ ではなく，特定の性質をもった数に置き換ええることであった。 たとえば，素数，平方数などである。数学的でない例 も挙げるなら，16種類の切手を配置して額面の和を等 しくして 4 次魔方陣に見立てるというものもある。

さて，ここではこれらの中でも最も多くの研究がみ られる素数を使う魔方陣について述べる。

## 2．素数魔方陣とは

素数魔方陣とは素数のみを使って $n$ 行 $n$ 列の行，列， 2 対角線の和を等しくするものである。歴史的にみる と，古くは1900年頃から文献を見つけることができる。 ただ，その当時は1を素数とみなしているため正確に は素数魔方陣ではない。コンピュータのない時代には素数魔方陣を見つけるのが困難で，1を許容することに よってかなり易しくできたからであろう。しかし，こ こでは1は素数としないで考える。

つぎに素数魔方陣と称するものの中には，暗黙に連続した素数を使うとい条件が含まれているものが多い。 これは見た目に美しいということもあるが，実は計算量を減らすための条件でもある。連続素数であれば最小の素数を決めれば全部の素数が決まる。しかし，非連続では，いろいろな組み合わせを試す必要があるた め検索範囲が膨大になってしまうのである。ここでは連続という条件があるか否かを明確に区別して説明す る。

いずれの条件においても素数は無限に存在するため解も無限に存在すると考えられる。その中で最初に見 つけておきたいのは定和が最小になるものである。以下，最小定和の素数魔方陣についてのみ述べる。

## 3 連続素数魔方陣

素数魔方陣では唯一の偶数素数である 2 が使えない ことは明らかであるから 3 以上の素数を使うことにな る。しかし， 3 から小さい順に $n^{2}$ 個の素数を使っても常に魔方陣ができるわけではない。 $n^{2}$ 個の総和は定和 の $n$ 倍なので，総和が $n$ の倍数でない場合は除外でき る。だが，総和が $n$ の倍数の場合でも魔方陣が可能か どうかは簡単にはわからない。その定和での解の存在証明は1つでも解を見つければよいが，存在しないこ とを証明するのは非常に難しい。演繹的に証明する方法は知られていない。そのため，全組み合わせを計算 して解の不在を証明しなければならない。
それでも遅くとも1970年代頃には 4 次から 9 次の

最小定和の連続素数魔方陣は発見されている［6］。これ らは魔方陣の愛好家の間では知られる鈴木昭雄氏と阿部楽方氏の仕事であった。さらに高次の連続素数魔方陣は，最近インターネット上の個人のホームページ に公表されている［8］。4次から9次までの連続素数魔方陣を例を図2に示す。

| 37 | 97 | 83 | 41 |
| ---: | ---: | ---: | ---: |
| 89 | 59 | 67 | 43 |
| 53 | 71 | 61 | 73 |
| 79 | 31 | 47 | 101 |

4 次連続 sum＝258

| 13 | 83 | 89 | 109 | 19 |
| ---: | ---: | ---: | ---: | ---: |
| 107 | 17 | 43 | 67 | 79 |
| 29 | 59 | 113 | 41 | 71 |
| 103 | 53 | 37 | 73 | 47 |
| 61 | 101 | 31 | 23 | 97 |
| 5 次連続 | sum$=313$ |  |  |  |


| 7 | 167 | 149 | 109 | 41 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 157 | 13 | 59 | 17 | 107 | 131 |
| 67 | 31 | 151 | 101 | 97 | 37 |
| 61 | 103 | 83 | 71 | 29 | 137 |
| 53 | 43 | 23 | 113 | 163 | 89 |
| 139 | 127 | 19 | 73 | 47 | 79 |

6 次連続 sum＝484

| 7 | 139 | 179 | 173 | 47 | 181 | 71 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 67 | 31 | 107 | 131 | 239 | 73 | 149 |
| 53 | 229 | 97 | 167 | 113 | 127 | 11 |
| 227 | 109 | 17 | 101 | 83 | 157 | 103 |
| 233 | 19 | 163 | 59 | 211 | 23 | 89 |
| 13 | 79 | 193 | 29 | 61 | 199 | 223 |
| 197 | 191 | 41 | 137 | 43 | 37 | 151 |

7 次連続 sum＝797

| 79 | 281 | 313 | 107 | 439 | 137 | 311 | 349 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 431 | 113 | 331 | 271 | 97 | 223 | 353 | 197 |
| 277 | 397 | 127 | 131 | 263 | 233 | 359 | 229 |
| 373 | 199 | 193 | 389 | 83 | 419 | 181 | 179 |
| 163 | 101 | 383 | 151 | 421 | 337 | 167 | 293 |
| 157 | 401 | 173 | 409 | 307 | 191 | 239 | 139 |
| 103 | 241 | 269 | 211 | 257 | 367 | 317 | 251 |
| 433 | 283 | 227 | 347 | 149 | 109 | 89 | 379 |

8 次連続 sum＝2016

| 37 | 347 | 263 | 281 | 353 | 79 | 227 | 383 | 241 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 449 | 43 | 317 | 257 | 431 | 83 | 197 | 97 | 337 |
| 439 | 311 | 179 | 41 | 211 | 223 | 283 | 151 | 373 |
| 157 | 421 | 331 | 443 | 73 | 433 | 101 | 191 | 61 |
| 89 | 409 | 397 | 53 | 47 | 109 | 467 | 401 | 239 |
| 251 | 277 | 59 | 419 | 379 | 479 | 127 | 113 | 107 |
| 269 | 103 | 139 | 67 | 229 | 463 | 461 | 167 | 313 |
| 131 | 163 | 293 | 457 | 181 | 71 | 199 | 349 | 367 |
| 389 | 137 | 233 | 193 | 307 | 271 | 149 | 359 | 173 |

9 次連続 sum＝2211

さてここまで， 3 次については触れなかったが， 3 次 の連続素数魔方陣だけは例外的に非連続素数魔方陣よ りも発見が困難であった。1988年に発表されたその最小定和の解は図 3 の通りで，最小といっても非常に大 きな数となっている［9］。コンピュータなしでは発見は難しかっただろう。

| 1480028201 | 1480028129 | 1480028183 |
| :--- | :--- | :--- |
| 1480028153 | 1480028171 | 1480028189 |
| 1480028159 | 1480028213 | 1480028141 |

3 次連続 sum＝4440084513

## 図3 3 次連続素数魔方陣

## 4．非連続素数魔方陣

## 4． 1 既知の非連続素数魔方陣

非連続素数魔方陣については連続魔方陣に比べると公表されている記事が少ない。それでも3，4次までは簡単な計算なので，誰が見つけたというほどのことも なく，最小定和の解を見つけることができる。最小定和の3，4次非連続魔方陣を図 4 に示す。

しかし， 5 次以上は論文，インターネットでは最少定和の魔方陣を見つけることはできなかった。

## 4． 2 最少定和の証明

素数魔方陣が見つかったとして，それが最少定和で あることを示すためには，それより小さい定和では魔方陣がないことを全検索して示す。3次，4次では素数 の個数が少ないのと値が小さいことから，計算量はそ れほど多くない。しかし，5次以上になると個数も値も大きくなるので計算量が莫大になることが予想される。 これについては後でわかるが，5次から9次までは総和 が $n$ の倍数という条件を満たす候補の中の最初（和が最少）の組み合わせで解が発見された。したがって， その候補より小さい定和での解の不在証明は不要であ った。


3 次非連続 sum＝177


4次非連続 sum＝120

図 43 次， 4 次非連続素数魔方陣

| 3 | 79 | 43 | 103 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| 71 | 11 | 7 | 61 | 83 |
| 67 | 47 | 89 | 17 | 13 |
| 73 | 59 | 41 | 29 | 31 |
| 19 | 37 | 53 | 23 | 101 |


| 3 | 89 | 83 | 53 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| 97 | 13 | 23 | 59 | 41 |
| 19 | 67 | 79 | 61 | 7 |
| 71 | 47 | 11 | 31 | 73 |
| 43 | 17 | 37 | 29 | 107 |


| 3 | 37 | 83 | 103 | 7 |
| ---: | ---: | ---: | ---: | ---: |
| 101 | 31 | 17 | 11 | 73 |
| 29 | 53 | 67 | 5 | 79 |
| 41 | 89 | 19 | 71 | 13 |
| 59 | 23 | 47 | 43 | 61 |


| 5 | 89 | 73 | 59 | 7 |
| ---: | ---: | ---: | ---: | ---: |
| 101 | 11 | 13 | 41 | 67 |
| 79 | 3 | 71 | 61 | 19 |
| 17 | 83 | 53 | 43 | 37 |
| 31 | 47 | 23 | 29 | 103 |

5次非連続 sum＝233

| 3 | 149 | 29 | 137 | 73 | 41 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 167 | 11 | 97 | 13 | 17 | 127 |
| 5 | 19 | 131 | 73 | 101 | 103 |
| 107 | 43 | 109 | 89 | 23 | 61 |
| 71 | 113 | 7 | 37 | 151 | 53 |
| 79 | 97 | 59 | 83 | 67 | 47 |


| 3 | 107 | 71 | 131 | 101 | 19 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 139 | 13 | 11 | 137 | 23 | 109 |
| 41 | 73 | 167 | 31 | 97 | 23 |
| 37 | 97 | 149 | 43 | 17 | 89 |
| 61 | 59 | 5 | 67 | 127 | 113 |
| 151 | 83 | 29 | 23 | 67 | 79 |


| 5 | 149 | 41 | 137 | 89 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 97 | 17 | 167 | 43 | 29 | 79 |
| 97 | 7 | 71 | 113 | 103 | 41 |
| 11 | 97 | 109 | 61 | 47 | 107 |
| 83 | 31 | 41 | 59 | 151 | 67 |
| 139 | 131 | 3 | 19 | 13 | 127 |


| 5 | 149 | 61 | 151 | 47 | 19 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 7 | 23 | 67 | 101 | 127 | 107 |
| 137 | 71 | 103 | 11 | 13 | 97 |
| 79 | 17 | 167 | 73 | 59 | 37 |
| 137 | 41 | 3 | 29 | 139 | 83 |
| 67 | 131 | 31 | 67 | 47 | 89 |

6 次非連続 sum＝432

| 3 | 137 | 239 | 131 | 67 | 43 | 113 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 101 | 17 | 197 | 31 | 151 | 139 | 97 |
| 107 | 163 | 181 | 211 | 7 | 41 | 23 |
| 83 | 157 | 71 | 103 | 37 | 173 | 109 |
| 199 | 13 | 11 | 179 | 191 | 61 | 79 |
| 73 | 193 | 29 | 19 | 47 | 149 | 223 |
| 167 | 53 | 5 | 59 | 233 | 127 | 89 |


| 5 | 199 | 113 | 223 | 19 | 131 | 43 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 163 | 17 | 107 | 37 | 101 | 127 | 181 |
| 41 | 179 | 73 | 193 | 83 | 157 | 7 |
| 89 | 79 | 233 | 139 | 13 | 31 | 149 |
| 239 | 61 | 23 | 3 | 211 | 137 | 59 |
| 29 | 151 | 173 | 71 | 109 | 97 | 103 |
| 167 | 47 | 11 | 67 | 197 | 53 | 191 |


| 7 | 67 | 89 | 193 | 139 | 191 | 47 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 23 | 31 | 83 | 233 | 11 | 173 | 179 |
| 223 | 199 | 107 | 17 | 109 | 59 | 19 |
| 167 | 149 | 61 | 197 | 3 | 5 | 151 |
| 79 | 131 | 41 | 43 | 157 | 181 | 101 |
| 97 | 29 | 239 | 13 | 211 | 71 | 73 |
| 137 | 127 | 113 | 37 | 103 | 53 | 163 |

7 次非連続 sum＝733

| 3 | 139 | 263 | 107 | 47 | 257 | 277 | 61 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 193 | 31 | 179 | 233 | 19 | 137 | 163 | 199 |
| 251 | 229 | 71 | 97 | 223 | 37 | 79 | 167 |
| 43 | 149 | 109 | 239 | 331 | 127 | 53 | 103 |
| 241 | 13 | 283 | 151 | 173 | 131 | 73 | 89 |
| 11 | 271 | 29 | 17 | 181 | 269 | 59 | 317 |
| 311 | 281 | 197 | 83 | 113 | 5 | 157 | 7 |
| 101 | 41 | 23 | 227 | 67 | 191 | 293 | 211 |


| 5 | 263 | 211 | 163 | 67 | 311 | 7 | 127 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 131 | 37 | 31 | 229 | 173 | 257 | 19 | 277 |
| 103 | 61 | 83 | 241 | 317 | 13 | 293 | 43 |
| 23 | 11 | 283 | 149 | 193 | 137 | 251 | 107 |
| 331 | 167 | 151 | 71 | 233 | 113 | 59 | 29 |
| 181 | 197 | 281 | 109 | 89 | 179 | 17 | 101 |
| 157 | 227 | 41 | 139 | 3 | 47 | 269 | 271 |
| 223 | 191 | 73 | 53 | 79 | 97 | 239 | 199 |


| 7 | 269 | 181 | 223 | 131 | 31 | 229 | 83 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 193 | 61 | 3 | 59 | 277 | 233 | 257 | 71 |
| 41 | 199 | 101 | 239 | 5 | 191 | 97 | 281 |
| 241 | 79 | 13 | 311 | 103 | 37 | 107 | 263 |
| 211 | 173 | 331 | 197 | 113 | 43 | 67 | 19 |
| 283 | 127 | 47 | 73 | 179 | 139 | 157 | 149 |
| 11 | 109 | 227 | 29 | 293 | 317 | 151 | 17 |
| 167 | 137 | 251 | 23 | 53 | 163 | 89 | 271 |

8 次非連続 sum＝1154

| 3 | 283 | 359 | 17 | 367 | 281 | 61 | 349 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 109 | 73 | 37 | 157 | 251 | 239 | 431 | 127 | 307 |
| 433 | 29 | 97 | 313 | 149 | 137 | 317 | 59 | 197 |
| 331 | 347 | 199 | 131 | 13 | 67 | 193 | 41 | 409 |
| 229 | 211 | 379 | 311 | 233 | 31 | 89 | 241 | 7 |
| 47 | 79 | 163 | 167 | 151 | 397 | 227 | 277 | 223 |
| 107 | 337 | 373 | 23 | 5 | 173 | 269 | 263 | 181 |
| 389 | 353 | 53 | 191 | 179 | 113 | 43 | 271 | 139 |
| 83 | 19 | 71 | 421 | 383 | 293 | 101 | 103 | 257 |


| 5 | 89 | 379 | 431 | 193 | 173 | 359 | 83 | 19 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 313 | 59 | 421 | 47 | 373 | 131 | 53 | 317 | 17 |
| 233 | 97 | 179 | 293 | 337 | 23 | 137 | 101 | 331 |
| 139 | 181 | 67 | 223 | 11 | 389 | 263 | 349 | 109 |
| 307 | 163 | 269 | 43 | 3 | 229 | 151 | 199 | 367 |
| 103 | 79 | 277 | 353 | 13 | 433 | 157 | 149 | 167 |
| 211 | 383 | 31 | 107 | 239 | 41 | 241 | 281 | 197 |
| 347 | 409 | 37 | 227 | 251 | 29 | 113 | 191 | 127 |
| 73 | 271 | 71 | 7 | 311 | 283 | 257 | 61 | 397 |

図5 5～9 次非連続素数魔方陣

## 4．3 非連続素数魔方陣の検索結果

## 4．3．1 5 次非連続素数魔方陣

5 次の非連続素数魔方陣では，総和が $n$ の倍数である条件から可能性のある最小定和が 233 となる。それで検索してみると非常に多くの解が求まる。図5の最上段がその例である。回転，反転，単純な行列入れ替え を同種としても 184,850 個 の解が出てきた。 5 次まで であれば，このように全数検索は可能である。計算時間は数十分であった。

## 4．3．2 モンテカルロ木探索

定和および使う素数の組合せの候補が分かったとし ても， 6 次以上ではたった 1 つの解を見つけるのも難し い。全検索のアルゴリズムでは大抵，大きさの順に探索していくので最初の方は全く解が出てこない。最初 の解が発見されるまでに相当の時間が費やされる。

そこで魔方陣の $n^{2}$ 個のセルの内のいくつかを事前に ランダムに埋めておき，残りのセルを計算するという方法を採用する。これはチェスや将棋の指し手の探索 で使われるモンテカルロ木探索と同じ考え方である。将棋と違って最善手を見つけずとも 1 つでも解が見つ かればよい。

具体的には 6 次非連続素数魔方陣では，定和として可能性のあるところを探すと，3，5，7，11，13，…，139， 149，151，167 で総和が 2592，定和が 432 となる。その 36 個で魔方陣を構成すればいい。とはいっても 6 次ともな ると全数検索は不可能である。そこで， 8 個のセルには候補から 8 個の素数をランダムに置いて残りのセルを合わせ るといら方針をとつた。

ランダムに置くわけだからほとんどはその先の計算 が行き詰って解は見つからない。それでも組合せを変 えて何千，何万回と繰り返すことによって解が出るこ とを期待する。実際，この計算は早ければ 1 秒以下，遅い場合でも数分で答えが出てくる。

7 次以上の非連続素数魔方陣についても同様の方法 で解を探索した。事前にランダムに置くのは 7 次で 49 セル中の 22 セル， 8 次の場合は 64 セル中の 27 セル， 9 次の場合は 81 セル中の 34 セルである。次数が上が れば計算時間が徐々に増える。それでも 9 次でも 1 時間程度待てば 1 つの解は求められるという程度である。 5 次から 9 次までの最小定和の非連続素数魔方陣を図 5 に示す。

## 5．最後に

素数魔方陣を連続と非連続に分けて最小定和を求

めた。 9 次までの素数魔方陣の最小定和を表 2 に示す。連続素数の方は多くの文献やネット上で紹介されてい るが，非連続の方はなかなか見られない。網掛けの部分は筆者自身が計算して求めた値である。

6 次以上では全解を求めることは当然ながら，たつた 1 つの解を見つけるのも容易ではない。そこで適当なセ ルにランダムに数を配置するという方法を採用した。 いかにもいい加減な方法であるが，それでも比較的短時間で解を見つけることができた。

表2 素数魔方陣の最小定和

| 次数 | 非連続 | 連続 |
| ---: | :---: | :---: |
| 3 | 177 | 4440084513 |
| 4 | 120 | 258 |
| 5 | 233 | 313 |
| 6 | 432 | 484 |
| 7 | 733 | 797 |
| 8 | 1154 | 2016 |
| 9 | 1731 | 2211 |

## 参考文献

1）Martin Gardner，Magic Square，Scientific American 1976.1

2）一松信，四色問題，講談社ブルーバックス， 1978
3）大石弥幸，ランダムサンプリングによる 6 次魔方陣 の総数の推定」数芸パズル第177号1992
http：／／www．daido－it．ac．jp／～oishi／TH5／magics6．pdf
4）K．Pinn，C．Wieczerkowski，Number of Magic Squares From Parallel Tempering Monte Carlo，Int．J．Mod．Phys． C 9 （1998） 541
5）http：／／blog．unfindable．net／archives／7179
6）平山，阿部，方陣の研究，大阪教育図書， 1983
7）大森清美，魔方陣の世界，日本評論社，2013
8）http：／／www．magic－squares．net／primesqr．htm
9）H．L．Nelson（Journal of Recreational Mathe－matics， 1988，vol．20：3，p． 214
10）大石弥幸，魔方陣ホームページ， http：／／www．daido－it．ac．jp／～oishi／TH5／ms．html


[^0]:    ＊大同大学情報学部情報システム学科

