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Special Function: Hyperbolic Leaf Function r=sleafh.(l)
(First Report)

Kazunori Shinohara*

Summary
In the previous study, the leaf functions sleaf,(l) and cleaf,(I) are defined. These functions satisfy the ordinary

differential equation (ODE) as follows:

d*r(1)

i —n-r(l)z"_1 n=123,-

The variable r(I) consists of a parameter /. The parameter n represents the natural number. The number is
defined as the basis. Graphs of these functions are obtained by solving the above ODE. We find that these
functions have the periodicity through these graphs. The curves and periodicity of the leaf functions are
different from that of the trigonometric functions.

In this study, we discuss the following ODE:

d*r(l)
di?

=n- r(l)zni1 n=123,---

In the right side of the above equation, the sign is replaced from “— to “+”. The initial conditions are defined as

follows:

r(0)=0

0lr(0)_1
a

The hyperbolic leaf function r=sleafh,(l) is defined as the solution of the above ODE with the initial conditions.
In the case of the basis n=1, the hyperbolic leaf function sleafh,(l) represents the hyperbolic function sink(l).
With respect to an arbitrary basis 7, the leaf hyperbolic function sleafh,(l) is closely related to the leaf function

sleafu(l).
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1. Introduction

To describe a natural phenomenon using a mathematical
model, various ordinary differential equations (ODEs) are
applied. These ODEs consist of unknown functions and their
derivative function. Some solutions to the equation can be
described as the elementary function, such as the
trigonometric function and the exponential function, etc. On
the other hand, various solutions of the ODE almost cannot
be derived from the elementary function. Therefore, these
solutions are typically computed using numerical analysis
approach. The numerical error in this approach causes
serious problems. The explanation on the process to derive
the exact solution of ODEs is a more meaningful problem.

In some ODEs where exact solutions become unclear, the
computational results by numerical analysis approach show
properties of periodicity. An unknown function is raised to
the 2n—1 power. The parameter n represents the natural
number, where the negative sign “—” is added. The function
is equal to the second derivative of the unknown function.
This equation is a case of an ODE with properties of
periodicity. In the case of n=I, the unknown function
represents the trigonometric function. In the case of n=2, the
unknown function represents the elliptic function. In the
case of n=3, to the best of our knowledge, the unknown
function is unclear and has never been published. The
unknown function is satisfied with the simple ODE. On the
other hand, we can observe the periodicity with respect to
the unknown function, which appears to be an important
primitive function. Therefore, in the previous study, the
unknown function is defined as the leaf function, which is
discussed in the present study.

In the case of n=1, the unknown function represents the
trigonometric function. As an analogous function with
respect to the trigonometric function, the hyperbolic function
exists. The hyperbolic function sink(l) is differentiated with

respect to the variable /.
%sinh(!) =1+ (sinh(7))’ (1)

Eq. (1) is differentiated with respect to the variable /.

d% sinh(l) = 2sinh(/)y/1+ (sinh(7)) _ sinh(l) 2)
dl 21+ (sinh()))’

By the second derivative of the hyperbolic function sink(l),
the function is returned to the original function sink(l). The
hyperbolic function r is satisfied with the following ODE:

2
%:r 3)

In previous study [1][2], the leaf function of the basis n=1
(the trigonometric function) is satisfied with the ODE as
follows:

2
%:_r @)

Comparing Eq. (3) with Eq. (4), the positive sign “+” in
front of the variable r in Eq. (3) is replaced by the negative
sign “—” as shown in Eq. (4). From these results, a
hypothesis is considered. The leaf function is satisfied with

the ODE as follows:

2
ﬂ . r2nfl

. n=123, ©)
dl
With respect to arbitrary n, the ODE pair of Eq. (5) is
assumed as follows:

2
d r_n.VZn—l

3 n=1273,-- (6)
dl
A function may be satisfied with Eq. (6), which may be
closely related to the leaf function.

In this study, we present the special function called
hyperbolic leaf function sleafh,(l), which satisfies Eq. (6).
Then, we discuss the relation between the hyperbolic leaf
function and the leaf function.

2. Definition of Hyperbolic Leaf Function

In this section, Eq. (6) is discussed. By multiplying dr/dl to
both sides of Eq. (6), the following equation is obtained:

2
%% _ annfl % n= 1,2,3’ e (7)

By integrating both sides of Eq. (7), the following equation
is obtained.



2
l(drj = lrz" +C

= n=123," ®)
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The symbol C represents the constant of integration. The
constant C is determined by the initial conditions as follows:

r(0)=0 )
ar(0) _, (10)
dl

Therefore, it is obtained as follows:

(1D

c-1
2

Using the above results and Eq. (8), the following equation
is obtained as follows:

d—r:i\/l+r2" (12)

dl

In the above equation, the positive sign “+” is demanded by
the initial condition dr(0)/dl=1>(0. Therefore, the above
equation is as follows:

dr (13)

—=A1+r
dl

As the variable r is increased, the function /1 + 2" 1is

monotonically increased. After the variables are separated, it
is integrated from 0 to r.

J"#d, .y (14)

The inverse function that satisfies the above equation is
defined as follows:

asleafh, (r) = JW#dt =1 (15)

O 1+

[T

In this study, the prefix “a” of the hyperbolic leaf function
sleafh,(l) represents the inverse function. Using the above

equation, it is obtained as follows:

r = sleafh, (1) (16)

In the case of the basis n=1, the following equation is
obtained:

sleafh, (1) = sinh () (17)
3. Maclaurin Series of Hyperbolic Leaf Function
In this section, the Maclaurin series is applied to the

hyperbolic leaf function. In the case of n=2, the function
sleafh(1) is expanded as follows:

sleafh, (1) = sleafh,(0)+ lll(j’ll sleafh , (O)jl

+id—21 fh(0)12+ld—31 i, (0) |1° +
ol a2 Y 3| a2

(18)

1(d"” 13
“+ﬁ e sleafh,(0) 1" +---

- lHl?z'ls L3024 5 4390848 L o)

It 9! 13!
:Z+145+4LJ°+411—F3+0(”)
10 120 15600

For detailed information, see Appendix A. The symbol O
represents the Landau symbol (the big O notation). The

symbol O(I'’) represents the order of the error.

211
3536000

(19)
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Next, in the case of n=3, the hyperbolic leaf function
sleafhs(l) can be expanded by the Maclaurin series as
follows:

1360 , 42768000

leafh (1) = L1+ 289 7 4 42768000 ;15
steafhs(1)= 7 13!

, 9108557568 0000

19!

(20)
1° +0(*)

Sl D g 188

= 1" +o(*)
14 728" 193648

In the case of n=4, the hyperbolic leaf function sleafh4(l) can

be expanded by the Maclaurin series as follows:

! 7 77
/ N=l+—0°+—1"+
steafh, () 110160

1% +0(l33) (21)
18 1224



In the case of n=3, the hyperbolic leaf function sleafhs(l) can

be expanded by the Maclaurin series as follows:

I 3 5 267 s
leafh \l)=1+—1] +—I[" + [
sleafhs(1) 22 616 420112 (22)
136545 o)
1515764096

4 . Relation between Leaf Function sleaf.(l) and
Hyperbolic Leaf Function sleafh.(1)

Using complex number i, we discuss the relation between
the leaf function sleaf,(l) and hyperbolic leaf function
sleafh,(l). The complex variable i -/ is substituted for the
variable / in the Maclaurin series of the function sleaf,(l)
(see Ref. [2]). The symbol i represents the imaginary number.
In the case of basis: n=1, the function sleaf;(l) and sleafh,(l)
represent the function sin(l) and sinh(l), respectively.

Therefore, Eq. (23) is obtained as follows:
sleaf,(i-1)=i-sleafh,(I) (sin(i-1)=i-sinh(/)) (23)

In the case of basis: n=2, it is obtained as follows:

steafy(i-1)=i-1--(-1F + -1y -0 v of-1)7)

+7
10 120 15600
sty Lo M s sy o)
10 120 15600
. . 1 5 . l 9 . 11 13 . 17 . o
mid—i i 007 )= i steaf, (1
TR0 T 200 T Tse00 (7)< i-stear. (1)

24)

The complex variable i -/ is substituted for the variable / in

the Maclaurin series of the function sleafhx(l).

N i‘.S L..o 11 AE
sleafh,(i-1) =i l+10(1 1) +120 (i-1) +715600 i-1)° +

cidr Lt Ly Mg o)
10 120 15600
1 1 11
=il+i-—DP+i-—0+i-——1"+i-0\" )=i-sleafh,(l
10 120 15600 ( ) A0

(25)

In the case of basis: n=3, it is obtained as follows:

ofi-1y')

Sleaf;(l.'l)=l'-l—ii7~[7+ii13,113_ 145
’ 14 728 193648

19 19
il

L4663 oo e 3111273
54221440 3059173644 80
77686677

AT 0([-43 _143) (26)
6338607792 0256

:i-l+414-l7+- > i1°+ 145 i-1"

14 728 193648
L4663 o 3111273
54221440 3059173644 80

77686677

2737 4. 43)_ ..
6338607792 0256 | T )= steath, (1)

In the case of basis: n=4, it is obtained as follows:

1 7
i D) =il — . Ly
sleaf (i -1)=i 181 12241

. I 0(1'33 .133) (27)
110160
sty Lo T
18 1224 110160

+i-0(1)=i-sleaf (1)

The complex variable i -/ is substituted for the variable / in

the Maclaurin series of the function sleafh(l).

1 7
sleath GG-D=i-1+—i°-1°+ A7
ifh, i 1) 18 o
T o) 2
110160
:i.[+ii.[9+ 7 P74 77 e
18 1224 110160

+i-0()=i-sleafh, (1)

In the case of basis: n=3, it is obtained as follows:

1 3
sleaf (i-1)=i-1——i" 1"+ —i" - 1"
f5(i-1) 22 616
136545 i) (29)
1515764096
3o, 267

NI I
22 616 420112

1515764096 | ! 0("")=i-stean, (1)

_ 267 l~31 .131 n
420112

Based on the above results in the case of odd number »
(m=2m-1 (m=1, 2, 3,--+)), the following equation can be
predicted.

sleaf2m71(i~l): i-sleafhz,nfl(l) (m = 1,2,3,-~~) (30)



Based on the above results in the case of even number n
(m=2m (m=1, 2, 3,---)), the following equation can be

predicted.
sleaf,, (i -1)=i-sleaf,,(I) (m=12,3,") (1)
sleafh,, (i-1)=i-sleafh,, (1) (m=1,23,--") (32)

5. Relation between Leaf Function sleaf>(l) and
Hyperbolic Leaf Function sleafh:(1)

In the case of the basis n=2, the relation between the leaf
function sleaf>(I) and the hyperbolic leaf function sleafh(l)
is derived as follows:

(sleaf2 (\/El))z = W (33)

For detailed information, see Appendix B. The above

equation also can be described as follows:

(sleafh2 (l))2 = L (Sleaf2 (\/E : l))4 (34)

(steat, (v2 1)}

Using Eq. (66) in Ref. [2], the relation between the function
cleaf>(l) and sleafh(I) can also be described as follows:

clea _ 1= (sleafn, (1))" >
leaf (‘/EI)_ 1+ (sleafh, (1))’

6. Graph of Hyperbolic Leaf Function sleafh.(l)
The hyperbolic leaf function sleafh,(l) is shown in Fig. 1.
The variables » and / represent the vertical and horizontal

axes, respectively. The hyperbolic leaf function sleafh, (1) is
the odd function. Therefore, it is obtained as follows:

sleafh, (— l) = —sleafh, (l) (n =123, ) (36)

Without depending on the value of the basis n, the gradient

around /=0.0 becomes /.0 by the initial condition of Eq. (10).

Within the domain over /=1.0, the gradient dr/dl sharply
increases according to increase in the basis n. Except for the
basis n=1, the limit of the variable / exists in the hyperbolic
leaf function sleaf,(l). The limit with respect to the basis 7 is
defined as ¢, (>0). The following equation is discussed:

lim sleafh, ()= (¢,>0) (n=2734,--) (37

The limit {, with respect to the basis n is obtained by the
following equation:

=1) (n=234,) (38)

o ]
g, =] ——dt(
J.O V142
The limit values are summarized in Table 1. The constant:

1= (39)

NG

is substituted in Eq. (34) (see Appendix B) as follows:

2 1+\/1— sleaf, V2 T '
(Sleafh{j/%]} ) (sleEfz(\/E[. %fj] (40)
_ 1+ \/l — (steaf, (x,))' 1+ \/1 “(o) -

(sleaf,(r,)) (o)

Based on the result of Eq. (40), the relation between the

constant ¢, and the constant 7, is obtained as follows:

(41)

j=r =2 |= w;d _2 lldj
= h [ J N ﬁj‘uh—z“ t
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Fig. 1 Curves of the hyperbolic leaf function sleafh,(l).
Table 1. Limit ¢, of variable / with respect to the hyperbolic

leaf function sleafhn(l). ( All results have been rounded to
no more than six significant figures)

Limit {, Value
g N/A
& 1.85407
G 1.40218
& 1.25946
(s 1.19057
Cioo 1.00703

7. Extended definition of Hyperbolic Leaf Function
sleafhu(1)

With respect to an arbitrary variable /, the value of the leaf
function sleaf,(l) can be obtained. On the other hand, except
for the basis: n=1, the hyperbolic leaf function sleafh,(l)

only can be obtained within the domain of the variable:

¢, <l<¢, (n=234,-) (42)

Egs. (33)—(35) are not necessarily satisfied with respect to
the arbitrary variable / because the hyperbolic leaf function
sleafh,(l) is not defined with respect to all domains of the
variable /. Therefore, to satisfy the Egs. (33)-(35) with
respect to all domains of the variable /, the hyperbolic leaf
function sleafh,(l) is defined as a multivalued function. The
multiple outputs of the variable / are obtained by one input
of the variable . Eq. (14) is redefined as follows:

’ 1
Z:2m~§”+'f0 mdz (43)

(n=234, m=--,-3-2-10123,)

The parameter m represents the integer. Using Eq. (43), the
graph of the hyperbolic leaf function is shown in Fig. 2—-Fig.
6. The vertical and the horizontal axes represent the
variables 7 and / in Eq. (16), respectively.
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Fig. 2 Curve of the hyperbolic leaf function r=sleafh:(l).
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Fig. 4 Curve of the hyperbolic leaf function r=sleafh.(l).
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Fig. 5 Curve of the hyperbolic leaf function r=sleafhs(l).

15—~

45200

L-5m PR B o G

-15

Fig. 6 Curve of the hyperbolic leaf function r=sleafh ;po(l).

8. Additional theorem of Hyperbolic Leaf Function
sleafh2(1)

The additional theorem of the hyperbolic leaf function
sleafh(l) is obtained as follows:

sleafh ,(I,+1,)=

sleafh , (I, W1+ (sleafh ,(1,))" + sleafh , (1, W1 + (sleah ,(1,))"

1- (Sleaﬂ’l 2 (11 ))2 (Sleafh 2 (12 ))2
(44)

sleafh ,(1,~1,)=
sleafh , (I, W1+ (sleafh ,(1,))" — sleafh , (1, W1 + (sleafh ,(1,))!

1= (steah, (1,)) (stean , (1, ))
(45)

For detailed information, see Appendix D.
9. Conclusion

In the previous study, we discussed the ordinary differential

equation, where the second derivative of a function is equal

to the negative value of the function with the power 2n—1
(n: natural number). Periodicity was found in the ODE
solutions of the leaf function.

In this study, we discuss the coupled ODE with respect to
the leaf function, where the second derivative of a function
is equal to the positive value of the function with the power
2n—1 (n: natural number). Compared with the ODE in the
previous study, the sign of the ODE in the hyperbolic leaf
function in the present study is different. We conclude as

follows:

* Using Maclaurin Series, the hyperbolic leaf function
sleafh,(l) can be described by an infinite sum of polynomial
terms.

* The hyperbolic leaf function sleafh,(I) has limits except for
the function sleafh ().

* The relation between the leaf function sleaf,(!) and the
hyperbolic leaf function sleafh,(l) is analogous to the
relation between the trigonometric function sin(/) and the

hyperbolic function sink(l).
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Appendix A

In the case of n=2, 3, 4, 5, the derivative and the Maclaurin
Series of the hyperbolic leaf function are described in this
section. First, the hyperbolic leaf function sleafh(l) is
expanded as the Maclaurin Series. The first derivative of the

hyperbolic leaf function sleafh(l) is as follows:
%sleafhz(l): 1+ (sleafhZ (l))4 (A1)

The second derivative of the hyperbolic leaf function
sleafh,(l) is as follows:



2

%sleqfh2 (l): 2- (sleafh2 (l))3 (A2)

The third derivative of the hyperbolic leaf function sleafh (1)
is as follows:

%sleasz (l) =6- (sleqfh2 (l))2 41+ (sleafh2 (l ))4 (A3)

The fourth derivative of the hyperbolic leaf function
sleafh(l) is as follows:

Z:Z—i sleafh ,(1)=12 - sleafh , () (1 + 2(sleafh 5 (l ))4) (A4)

The fifth derivative of the hyperbolic leaf function sleafh(1)
is as follows:

;ITSSSleafh2 (l): 12 (1 +10- (sleafh2 (l))4 1+ (sleqfh2 (l))4
(AS)

The sixth derivative of the hyperbolic leaf function sleafh(1)
is as follows:

5766 sleafh,(l)="72 (sleaﬂ12 (1 ))3 (7 + 10(sleaﬂz2 (l))4 ) (A6)

The seventh derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

7

d
WSZEthz(l) (A7)

= 504(steasn, (1)) (3 +10(steafh, (1)) N1+ (steatm, (1))

The eighth derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

d8
Wsleafhz(l) (A8)
=1008 sleafh, (Z)(S + 3’6(sleafh2 (l))4 + 4O(sleafh2 (1 ))8)

The ninth derivative of the hyperbolic leaf function sleafh(1)
is as follows:

9

%sleafhz(l) (Ag)

=3024 (1 +60(steafh, (1)) +2(steafn, (1)) N1+ (steasn, (1))

The tenth derivative of the hyperbolic leaf function sleafh(1)
is as follows:

10

j _ sleafh, (1) = 6048 (sleafh, (1)) -

(121 + 660(sleafh L1 ))4 + 600(sleafhz (t ))8)

(A10)

The eleventh derivative of the hyperbolic leaf function
sleafh(l) is as follows:

11

dl 11
(1 1+ 140(steafn, (1)) +200(steatn, (1)) N1+ (steapn, (1))

sleafh, () = 199584 (steafh, (1)) -

(All)

The twelfth derivative of the hyperbolic leaf function
sleafh,(l) is as follows:

12
Zlﬁsleafhz(l): 399168 sleafh, (1)-

{1 1+ 2(steafn, (1)) (221 +780(steafh, (1))" +600(sleafh, (1)} )}
(A12)

The thirteenth derivative of the hyperbolic leaf function
sleafh,(l) is as follows:

d—nsleafhz (1)=399168 1+ (sleath, (1)) -

dll3

{1 1+130(steath, (1))’ (17 +108(steafh, (1)) +120(steasn, (1)) )}
(A13)

Using the derivatives of Eqs. (A1)—(A13), the Maclaurin
Series of the hyperbolic leaf function sleafh,(l) is obtained
as follows:

sleafh, (1) = sleafh, (0)+ %[% sleafh, (o)jz + 21![5; sleafh, (O)Jz2

1(d’ 3 1(d” 1
+§ Wsleafhz(O)l +--~+E P sleafh, (0) |I"® + -

3024 )y 4390848 s )
91 13!
gy L s o)
100 7120 15600

L2y
1! 5!

(Al14)



The symbol O represents the Landau symbol. Using the
above equation, the second derivative with respect to the

variable / is obtained as follows:

d? 3 11
= _sleafh,(1)=20° +=1" + — "' + O(/" (A15)

Using Eq. (A14), the following equation is obtained:

1 1 11 ’
2-(steafn, (1)) =2-| 1+—F +—1 +——1" + 01" j
(stea (1) ( 10 120 15600 ( )
S 2 o)
5 100
(A16)
Eq. (A15) is equal to Eq. (A16). Therefore, the hyperbolic
leaf function sleafh,(l) satisfies Eq. (6). Next, in the case of
n=3, the Maclaurin Series is applied to the hyperbolic leaf

function sleafh;(l). The first derivative of the hyperbolic leaf
function sleafhs(l) is as follows:

%sleaf%(l) =4/1+ (SIeaﬂz3 (l))6

(A17)

The second derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

j%sleafh3(l)= 3+ (steatn, (1)) (A18)

The third derivative of the hyperbolic leaf function sleafh;(1)

is as follows:
%sleqﬂh(l) _ 15 -(stean, (1)) A1+ (steam, () (A19)

The fourth derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

%sleaﬂl J()=1s5 -(sleafh 3 (1))3 . (4 + 7(sleafh , (l))é) (A20)

The fifth derivative of the hyperbolic leaf function sleafhs(1)

is as follows:

3755 sleafh, (l )
= 45(steafn, (1)) (4 + 21(steany (1)) 1+ (steath, (1))°

(A21)

The sixth derivative of the hyperbolic leaf function sleafhs(l)

is as follows:

d6
o sleafh (l )
= 45sleafh, (1)(8 +188(steafn, (1)) +231(sleafn, (1))‘2)

(A22)

The seventh derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

%sleaﬂu(l) =454/1+ (sleotfh3 (l))6 .

&+ 7(stean, (1)) (188 + 429 (steam, (1)) )

(A23)

The eighth derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

j—;sleaﬂz3(l) =2025 (sleaﬂz3 (l))5 .

476+ (tean, (0 152 ¢ 145(stas, 0 )

(A24)

The ninth derivative of the hyperbolic leaf function sleafhs(l)

is as follows:

%sleafh}(l) = 22275 (sleafh3 (l))4 1+ (sleafh3 (l))6 " (A25)

80 -+ 7(stearn, (1) 152 + 221(stearn, (1)) )

The tenth derivative of the hyperbolic leaf function sleafhs(l)

is as follows:

410

< sleafh (1) = 22275 (steafh, (1)) -

{320 +7(steafh, (1)f (1600 +5512(steafh, (1)) + 4199 (sleatn, (1))’ )}
(A26)

The eleventh derivative of the hyperbolic leaf function

sleafhs(l) is as follows:

d—nsleafh3(l) = 0606825 (sleal‘)‘h3 (l))zﬂl + (sleafh3 (l))6 .

dlll
(320 +7(steafn, (1)) X4800 +27560 (steafh, (1)) +29393 (sleafh, (1))'2)
(A27)



The twelfth derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

dl
e —=sleafh, ( )

= 42768000 sleafh (I)+ 1806948000 0 (sieafh, (1))
+2051848260 00 (sleafh, (1)) + 4941481545 00 (sleafn, (1))’
+3162341432 25 (steaph, (1))

(A28)

The thirteenth derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

dlw sleafh (1) = 334125 \J1+ sleafh $(1) -

(128 + 378560 (steafn, (1)) + 7983248 (sleafh, (1))’
+ 28099708 (steafh (1)) + 23661365 (steath, ()]

(A29)

Using the derivatives of Eqs. (A17)—(A29), the Maclaurin
Series of the hyperbolic leaf function sleafhs(l) is obtained
as follows:

Sleaf%(l):%] @17 %l”

, 9108557568 oooo o4 o)

19! !
—I4 717 5 2oy 145 119+0(25)

728 193648

(A30)

Using the above equation, the second derivative with

respect to the variable / is obtained as follows:

lilll + 1305 7V +O(123)
14 5096

2
%slea_fh3(l)= 30+ (A31)

Using Eq. (A30), the following equation is obtained:

5 145 °
3-(s/ N =3 1+—1"+—I" " +o\*
(steafhs () [+ T8 Tloseas | ( )J
—3p e B B0 ()
14 5096

(A32)

Eq. (A31) is equal to Eq. (A32). Therefore, the hyperbolic
leaf function sleafhs(l) satisfies Eq. (6). Next, in the case of

the basis: n=4, the Maclaurin Series is applied to the
hyperbolic leaf function sleafhy(l). The first derivative of the
hyperbolic leaf function sleafhy(l) is as follows:

(A33)

%sleaﬂu(l): + (sleaj‘hét(l))g

The second derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

2

e )= 30

4. (sleafh4 (l))7

The third derivative of the hyperbolic leaf function sleafh(l)

is as follows:

(A35)

desleqﬂu(l )=28 - (steafn, (1)) -1+ (steasn, (1))

The fourth derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

4

A steafh (1)=56- steat, (1)} - -+ 5(steam, (1)) ) (A36)

The fifth derivative of the hyperbolic leaf function sleafh(l)

is as follows:

d’ ¢
e sleafh (1) = 280 (sleafh . (l)) : (A37)

(3 + 13(sleafh4 (l))8 1+ (sleafh 4 (l))8

The sixth derivative of the hyperbolic leaf function sleafh(1)
is as follows:

l° sleajh (1)=1120 (sleaﬂz (l))3
(3 + 45(sleafh4 (1) )X + 52(sleafh4 (l)) )

(A38)

The seventh derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

d7
7sleafh4( )=1120 sleafh )Z\H+ sleafh

(9 +495(steafn, (1)) + 988 (steafh, (i )yé)

(A39)

The eighth derivative of the hyperbolic leaf function



sleafhy(l) is as follows:

8
% sleafh, (l) = 2240sleafh, (Z)

(9 +2502(sleafh, (1)] +12357 (sleatn, (1)) +10868 (sleash, (1))“)
(A40)

The ninth derivative of the hyperbolic leaf function sleafhy(l)
is as follows:

%Zsleafh4(1)= 224041+ (steafh, (1)) -

(9 +22518(sleatn, (1)) +210069 (steafh, (1)) + 271700 (steash, (1))2“)
(A41)

The tenth derivative of the hyperbolic leaf function sleafhy(l)
is as follows:

jl“) sleafh (1) = 313600 (sleaﬂ1 (1 ))
(1287 +25938 (steafh, (1)) + 76587 (steafh, (1)) + 54340 (sleatn, (1))“)
(A42)

The eleventh derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

11

< steafh,(1)= 313600(sleafh, (1)) \1 + (steatn, (1)) -
(9009 +389070(steafh, (1)) +1761501(sleath, (1)) +1684540(sleath, (1))“)
(A43)

The twelfth derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

111, steafh, (1) = 627200 (steafn,, (1)) -

(27027 +17(steatn, ()] (162855 + 13(slea_/h4(/))x(103521 +217953 (sleafh, (1)) +129580 (slea_/h(l))m)))

(A44)

The thirteenth derivative of the hyperbolic leaf function
sleafhy(l) is as follows:

13

Zl“ steafh (1) = 8153600 (steafh , (1)) 1+ (steatn , (1) ~§0395 +17(steapn , (1)) -

(162855 +2173941 (sleafh , (1)) + 6320637 (sleatn , (1))° + 4794460 (steath , (1)) )}

(A45)

Using the derivatives of Eqgs. (A33)—(A45), the Maclaurin
Series of the hyperbolic leaf function sleafhy(l) is obtained

as follows:

1 7
slea N=1+—0 + "7+
/i) 18 1224

7T 4 o) (Ad6)
110160

Using the above equation, the second derivative with
respect to the variable / is obtained as follows:

385

2
%szeaﬂ“(z): Al +%1'5 vl +o(r) (A47)

Using Eq. (A46), the following equation is obtained:

4'(Sle‘afh4(l))7:4-[1+L19+L117+ 77

18 1224 110160

15y 0( 33 )I
—ar s 385 o)
9 918

(A48)
Eq. (A47) is equal to Eq. (A48). Therefore, the hyperbolic
leaf function sleafhy(l) satisfies Eq. (6). Next, in the case of
the basis: n=5, the Maclaurin Series is applied to the
hyperbolic leaf function sleafhs(l). The first derivative of the

hyperbolic leaf function sleafhs(l) is as follows:

(A49)

%sleafhs(l) =yl+ (Sleafhs (l))lo

The second derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

2

< steath. (1) - (A30)

5 (sleafh5 (l))9

The third derivative of the hyperbolic leaf function sleafhs(l)
is as follows:

sleafh )X A1+ sleafh IO (AS1)

d3
TSleath(l)

The fourth derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

4

%sleqth(l) =45 (sleqfh5 (l))7 : (8 + 13(sleafh5 (l))m) (A52)

The fifth derivative of the hyperbolic leaf function sleafhs(l)
is as follows:



:;Tsssleafh5 ()= 45(sleafh5 (l))6 . (A53)

(56 +221(steafn s (1))° N1+ (stean, (1))

The sixth derivative of the hyperbolic leaf function sleafhs(l)

is as follows:

%sleqfhs(l)z 135(sleafh5 (l))5 :
(1 12 +1384(sleafh, (1))° + 1547 (sleafh, (z))z°)

(A54)

The seventh derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

jT:sleafm(l) =675 (sleafh5 (l))4 1+ (sleafh5 (Z))‘O " (A55)

(1 12 + 4152 (steafh (1)) + 7735 (steafn, (z))”)

The eighth derivative of the hyperbolic leaf function
sleafhs(l) is as follows:

%sleafh ()= 675(steatn , (1)) - (448 +59136 (steafn , (1)) (A56)

+264528 (sleafh ; (1)) + 224315 (sleafh (1))3")

The ninth derivative of the hyperbolic leaf function sleafhs(l)

is as follows:

571 steafh (1) = 2025 (steafh , (1)) /1 + (steafn ; (1)) -

vl

(448 +256256 (steafh , (1)) + 202804 (steafh , (1)}" + 2467465 (sleafh, (1))”)

(A57)

The tenth derivative of the hyperbolic leaf function sleafhs(l)

is as follows:

10

%ﬂeaﬂzs (1)= 2025 sleafh, (1)- (896 +3078208 (sleash (1))

+48973408 (steafh (1)} +133716176 (sleafh, (1)) + 91296205 (sleath, (1))”)

10

(AS8)
The eleventh derivative of the hyperbolic leaf function
sleafhs(l) is as follows:
jl—llllsleq/hs(l): 20251+ (steath, (1)) - {896 +11(steatm . (1)) -

| +376836496 (steafh (1))" + 340285855 (steafh . (I))" )}

(A59)

(3078208 +93494688 (sleafh , (1))

Using the derivatives of Egs. (A49)—(A59), the Maclaurin
Series of the hyperbolic leaf function sleafhs(l) is obtained

as follows:

1 3 267
sleath (1)=1+—I""+ — "'+ P!
/hs(1) 22 616 420112

"+o(r)

(A60)
136545
1515764096

Using the above equation, the second derivative with

respect to the variable / is obtained as follows:

d? 45 4005
= sleafh (1)=5° + —1" + —— 1%
dr’ /i () 22 6776 (A61)
N 682725 139+0(l49)
4621232

Using Eq. (A60), the following equation is obtained:

5+ (steafh (1))

9
S5 gy 3y 267 gy 136545 s
220 616 420112 1515764096
sy A5, 4005 g 682725 )
2 6776 4621232

(A62)

Eq. (A61) is equal to Eq. (A62). Therefore, the hyperbolic
leaf function sleafhs(l) satisfies Eq. (6).
Appendix B

In this section, the relation between the leaf function
sleaf>() and the hyperbolic leaf function sleafhs(l) is
described. The following polynomial is considered.

yixt=2x*+y* =0 (B1)

The above equation is transformed as the following:

_, V2x (B2)
yes V1+x*

We only discuss about the following equation.

_ V2x (B3)
1+ x*



The above equation is derived with respect to the variable x.

&5 -x) (B4)
(1 +x )5

On the other hand, the following equation is obtained.

1 4 ﬁ(l—x42
\/1 - dx \/ ( J (1 + x4)5 (B5)
1+x
_ 1+x \/*( 2_\/5 1
(1+x42 Vit e

Using the above equation, the following equation is
obtained.

dy _ dx —0 (B6)

\/1—y \/x +1

where the variables x and y are set as the following

equations:
x = sleafh, (1) (B7)
v = sleaf, (\El) (BY)

The above equation is differentiated with respect to the
variable /.

= \/l-i-)c4 (B9)

= \/1+(sleafh2(l))4
% = \/E\H—(sleafz(x/al))4 = x/Ewll—y4

(B10)

Using the above equations, the following equation is
obtained:

Y _H = L &y L &y

\/1— \/x +1 \/l—y dl \/del
F\f\h— Yl - \/7\/7\/)6 +1dl =0

(B11)

Eq. (B7) and Eq. (B8) satisfy Eq. (B6). Therefore, the
following relation is obtained by Eq. (B1).

(sleaf2 (\/El))z (steafn , (1)) - 2(sleafn , (1))’ + (sleaf2 (\/EZ) =0
(B12)

Solving the above equation for the hyperbolic leaf function

sleafhy(l), the two solutions can be obtained. In the case of

inequality ‘ sleafh 2(1] <1, the following equation is applied.

11— (steas, (V2 1))

(stear, (V2 -1)f

(sleafh, (1)) = (B13)

In the case of the inequality ‘Szeq/h 2(1] > 1, the following

equation is applied.

1oy (steaf, (V2 1))
(stear,(V2 -1)f

(steaf, (1))’ = (B14)

Appendix C
In this section, the relation between the hyperbolic function

sinh(l) (=sleafh;(l)) and the hyperbolic leaf function
sleafh,(l) is described. The following equation is considered.

(steafn, (1)) =sinh(n6) n=1,2,3,--- (ChH

Using the above equation, the following equation is
obtained.



6= Larcsin h((Sleaﬂln ¢ ))n)
n

——tn((steat, (1) + 1+ (steat, ()" ) (C2)

n=12,3,--

The above equation is differentiated with respect to the
variable /.

de _ n(sleafh, (1)) L+ (s] N
dl 1+ (stean (1)) *{oteaft, ) (C3)
= (sleafh, (1))

The following equation is obtained by integrating the above

equation from 0 to /.
6 = | (sleafn, () 'd (1=0,0=0by (C2)) (C4)

Using Egs. (Cl) and (C4), the following equation is
obtained.

(steath, (1)) = sinh(nj.; (sleafh, (t))"_ldt) (C5)
n=12,3,--

Appendix D

To prove the additional theorem of Eq. (44), the following
equation is set.

L +1,=c (D1)

The symbol ¢ represents the arbitrary constant. Using Eqgs.
(D1) and (44), the following equation is obtained.

sleafh , (c) =

sleaf , (1 W1+ (sleafh ,(c = 1,))* + sleafh , (¢ =, W1 + (steafh , (1,))’

1 (sleafn , (1,)) (sleafh ,(c — 1,)
(D2)

The right side of the above equation is defined as follows:

()= sleafh , (I, W1+ (steafh , (c = 1,))" + sleafh , (¢ — 1, N1+ (sleath , (1,))'

1- (Sleafh 2 (11 ))2 (Sleqfh 2 (C -1 ))2

(D3)

The symbol sleafh,(c) is just constant. The following
equation is obtained by Eqgs. (D2) and (D3).

F(1,) = sleafh ,(c) (D4)
Therefore, the function F(/;) also has to be a constant.

oF (1) (D5)
al,

If the above equation is satisfied, the function F(7;) becomes
a constant. To prove Eq. (D4), the function F(I;) is

differentiated with respect to the variable /;.

or (1)

al,

{:Iea/h LW+ (stea (e~ 1)) + steath , (¢ — 1, Wi+ (sleafh , (1,))* }{1 — (steafh , (1,))* (steath ,(c~1,))’ |
{= Cteam , (1)) (stea , e ~1,)) |

{Sleuﬂz LW+ (sleafh , (¢ 1,))* + sleafh , (¢ — 1, W1+ (sleath , (1, ))* }’gf (steafh , (1,)) (steath , (¢ ~ 1, ))3}

- Gsteam ,0,) (stearm . (c~1,)

(D6)
On the other hand, the following equation is obtained.

{sleafh (W1 + (steath , (e = 1)) + sleafh ,(c = 1,1 + (sleafh , (1,))' ¥

= \/1 + (sleafh L)) \/1 + (sleafh ) (c —1,))" = 2sleafn (1, )(sleafh ) (c -1))
=1+ (steatn , (c = 1)) 1+ (steafh , (1,))' + 2sleafh ,(c — 1, Xsleafh , (i, )}
= 2sleafh ,(c — 1, \sleafh , (1,)) — 2sleafh , (1, Nsleafh , (c - 1,))’

(D7)

{1~ (steath . 1,)) (steam (1)1 | (D8)
= =2(sleafn, (I, )sleah , (c ~ 1))’ N1 + (steash , (1, ))’
+ Z(S[eafh 2 (ll ))z sleafh , (C =1 )Vl + (S[eafh 2 (c -1 ))4

By substituting Egs. (D7) and (DS) into Eq. (D6), Eq. (D5)
is obtained. The function F(I;) does not depend on the

variable /;. Therefore, the following equation is obtained.
F(1,)=F(0) (D9)

By substituting 0 into Eq. (D3), the following equation is
obtained.

F(0)= sleafh , (0 W1+ (sleafh , (c - 0))' + sleafh ,(c — 01+ (sleafh ,(0))*

1= (steafh , (0)) (steafh , (c - 0))°

= sleafh ,(c)

(D10)



By Egs. (D9) (D10), Eq. (D4) is obtained. The proof of Eq.
(45) is similar with that of Eq. (44).

Appendix E

The integration of the hyperbolic leaf function:
(sleafh,(1))™" is obtained as follows:

nJZ(sleaﬂz ) ar

:1n((sleafh () + 1+ (steatn n(z))“j (ED)

0<I<g,
n=2,3,-

The proof is as follows :

%( 1+ (stean (1)) j = i(l +(sleafh (1)) )%

dl
= %(1 + (sleafh (1)) ﬁ_l 2n(steafh (1)) -1+ (sleafn (1))

. (steath (1))""' 1+ (sleafn (1))
1+ (steafh (1))
= n(sleatn (1))

(E2)
Using Eq. (E2), the following equation is obtained:

%ln((yleafh" (O +1+ steatn, (")

n(steah, (1)) 1+ (stearh, ()" + n(sieaph, ()" (E3)
(steafh, (1)) + 1+ (stea, 1))

\/W + (sleafn, (1))

(stearh, (1)) +1+ (stearn, (1))"

= n(sleafn, (1))

= n(sleafn, (1))

In the case n=I/ of Eq. (El), the following equation is
obtained:

Ll(sleafh l(t))(J dt

- 1n((sleafh (O) + 1+ (steam (1)} ]

JZdt = ln(sleafh (D) + 1+ (steatn (1)) ) (E5)
/= ln(sleafh ()+ 1+ (sleafh 1(l))zj (E6)

(E4)

Therefore, the following equation is obtained:

e' = sleafh 1(l)—i— 1+(sleafh l(l))2 (E7)

Using Eq. (17), the above equation represents the following
equation:

e’ = cosh(/) + sinh(/) (EB)
Appendix F

The numerical data of the hyperbolic leaf function is
summarized in the succeeding Tables.



Table 2 Numerical data of the hyperbolic leaf function sleafh.(l).
(All results have been rounded to no more than five significant figures)

r (=sleafhn(l))

n=1 n=2 n=3 n=4 n=>5 n=100

-5.4 -110.70 -6.1639 0.2087 -0.3621 -0.6380 0.6422
-3.2 -90.633 -2.7559 0.4088 -0.1621 -0.4376 0.58422
-5.0 -74.203 -1.7609 0.6109 0.0378 -0.2376 -0.9718
-4.8 -60.751 -1.2679 0.8253 0.2378 -0.0376 -0.7718
-4.6 -49.737 -0.9514 1.0933 0.4378 0.1623 -0.5718
-4.4 -40.719 -0.7080 1.6018 0.6388 0.3623 -0.3718
-4.2 -33.335 -0.4947 -8.7394 0.8494 0.5624 -0.1718
-4.0 -27.289 -0.2920 -1.5490 1.1283 0.7646 0.0281
-3.8 -22.339 -0.0918 -1.0721 2.4892 0.9945 0.2281
-3.6 -18.285 0.1081 -0.8104 -1.2211 1.7243 0.4281
-3.4 -14.965 0.3084 -0.5975 -0.8995 -1.0832 0.6281
-3.2 -12.245 0.5115 -0.3957 -0.6828 -0.8239 0.8281
-3.0 -10.017 0.7263 -0.1956 -0.4811 -0.6190 -0.9860
-2.8 -8.1919 0.9736 0.0043 -0.2810 -0.4188 -0.7859
-2.6 -6.6947 1.2993 0.2043 -0.0810 -0.2188 -0.5859
-2.4 -3.4662 1.8155 0.4045 0.1189 -0.0188 -0.3859
-2.2 -4.4571 2.8866 0.6064 0.3189 0.1811 -0.1859
-2.0 -3.6268 6.8525 0.8203 0.5190 0.3811 0.0140
-1.8 -2.9421 -18.492 1.0862 0.7218 0.5812 0.2140
-1.6 -2.3755 -3.9342 1.5837 0.9463 0.7842 0.4140
-1.4 -1.9043 -2.1929 -15.137 1.3275 1.0217 0.6140
-1.2 -1.5094 -1.5009 -1.5660 -1.7755 2.2696 0.8140
-1.0 -1.1752 -1.1091 -1.0791 -1.0620 -1.0510 -1.0028
-0.8 -0.8881 -0.8339 -0.8153 -0.8075 -0.8039 -0.8000
-0.6 -0.6366 -0.6078 -0.6020 -0.6005 -0.6001 -0.6000
-0.4 -0.4107 -0.4010 -0.4001 -0.4000 -0.4000 -0.4000
-0.2 -0.2013 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




Table 3 Numerical data of the hyperbolic leaf function sleafh.(l).
(All results have been rounded to no more than five significant figures)

r (=sleafhn(l))

n=1 n=2 n=3 n=4 n=>5 n=100
0.2 0.2013 0.2000 0.2000 0.2000 0.2000 0.2000
0.4 0.4107 0.4010 0.4001 0.4000 0.4000 0.4000
0.6 0.6366 0.6078 0.6020 0.6005 0.6001 0.6000
0.8 0.8881 0.8339 0.8153 0.8075 0.8039 0.8000
1.0 1.1752 1.1091 1.0791 1.0620 1.0510 1.0028
1.2 1.5094 1.5009 1.5660 1.7756 -4.8024 -0.8140
1.4 1.9043 2.1929 15.137 -1.3275 -1.0216 -0.6140
1.6 2.3755 3.9342 -1.5836 -0.9463 -0.7841 -0.4140
1.8 2.9421 18.492 -1.0861 -0.7217 -0.5812 -0.2140
2.0 3.6268 -6.8525 -0.8203 -0.5190 -0.3811 -0.0140
2.2 4.4571 -2.8866 -0.6064 -0.3189 -0.1811 0.1859
2.4 5.4662 -1.8155 -0.4044 -0.1189 0.0188 0.3859
2.6 6.6947 -1.2993 -0.2043 0.0810 0.2188 0.5859
2.8 8.1919 -0.9736 -0.0043 0.2810 0.4188 0.7859
3.0 10.017 -0.7263 0.1956 0.4811 0.6190 0.9860
3.2 12.245 -0.5115 0.3957 0.6828 0.8239 -0.8281
3.4 14.965 -0.3084 0.5975 0.8995 1.0832 -0.6281
3.6 18.285 -0.1081 0.8104 1.2211 -1.7243 -0.4281
3.8 22.339 0.0918 1.0721 -2.4892 -0.9944 -0.2281
4.0 27.289 0.2920 1.5490 -1.1283 -0.7646 -0.0281
4.2 33.335 0.4947 8.7395 -0.8494 -0.5624 0.1718
4.4 40.719 0.7080 -1.6018 -0.6388 -0.3623 0.3718
4.6 49.737 0.9514 -1.0933 -0.4378 -0.1623 0.5718
4.8 60.751 1.2679 -0.8253 -0.2378 0.0376 0.7718
5.0 74.203 1.7609 -0.6109 -0.0378 0.2376 0.9718
5.2 90.633 2.7559 -0.4088 0.1621 0.4376 -0.8422
5.4 110.70 6.1639 -0.2087 0.3621 0.6380 -0.6422




