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Special Function: Hyperbolic Leaf Function r=sleafhn(l) 

(First Report) 

Kazunori Shinohara* 

 

Summary 
In the previous study, the leaf functions sleafn(l) and cleafn(l) are defined. These functions satisfy the ordinary 

differential equation (ODE) as follows: 
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The variable r(l) consists of a parameter l. The parameter n represents the natural number. The number is 
defined as the basis. Graphs of these functions are obtained by solving the above ODE. We find that these 
functions have the periodicity through these graphs. The curves and periodicity of the leaf functions are 
different from that of the trigonometric functions. 
In this study, we discuss the following ODE:  
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In the right side of the above equation, the sign is replaced from “ “ to “+”. The initial conditions are defined as 
follows: 
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The hyperbolic leaf function r=sleafhn(l) is defined as the solution of the above ODE with the initial conditions. 
In the case of the basis n=1, the hyperbolic leaf function sleafh1(l) represents the hyperbolic function sinh(l). 
With respect to an arbitrary basis n, the leaf hyperbolic function sleafhn(l) is closely related to the leaf function 
sleafn(l). 
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1 Introduction 

To describe a natural phenomenon using a mathematical 
model, various ordinary differential equations (ODEs) are 
applied. These ODEs consist of unknown functions and their 
derivative function. Some solutions to the equation can be 
described as the elementary function, such as the 
trigonometric function and the exponential function, etc. On 
the other hand, various solutions of the ODE almost cannot 
be derived from the elementary function. Therefore, these 
solutions are typically computed using numerical analysis 
approach. The numerical error in this approach causes 
serious problems. The explanation on the process to derive 
the exact solution of ODEs is a more meaningful problem.  
In some ODEs where exact solutions become unclear, the 

computational results by numerical analysis approach show 
properties of periodicity. An unknown function is raised to 
the 2n 1 power. The parameter n represents the natural 
number, where the negative sign “ ” is added. The function 
is equal to the second derivative of the unknown function. 
This equation is a case of an ODE with properties of 
periodicity. In the case of n=1, the unknown function 
represents the trigonometric function. In the case of n=2, the 
unknown function represents the elliptic function. In the 
case of n=3, to the best of our knowledge, the unknown 
function is unclear and has never been published. The 
unknown function is satisfied with the simple ODE. On the 
other hand, we can observe the periodicity with respect to 
the unknown function, which appears to be an important 
primitive function. Therefore, in the previous study, the 
unknown function is defined as the leaf function, which is 
discussed in the present study.  
In the case of n=1, the unknown function represents the 

trigonometric function. As an analogous function with 
respect to the trigonometric function, the hyperbolic function 
exists. The hyperbolic function sinh(l) is differentiated with 
respect to the variable l. 
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Eq. (1) is differentiated with respect to the variable l. 
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By the second derivative of the hyperbolic function sinh(l), 
the function is returned to the original function sinh(l). The 
hyperbolic function r is satisfied with the following ODE: 
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In previous study [1][2], the leaf function of the basis n=1 
(the trigonometric function) is satisfied with the ODE as 
follows: 
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Comparing Eq. (3) with Eq. (4), the positive sign “+” in 
front of the variable r in Eq. (3) is replaced by the negative 
sign “ ” as shown in Eq. (4). From these results, a 
hypothesis is considered. The leaf function is satisfied with 
the ODE as follows: 
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With respect to arbitrary n, the ODE pair of Eq. (5) is 
assumed as follows: 
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A function may be satisfied with Eq. (6), which may be 
closely related to the leaf function. 
In this study, we present the special function called 
hyperbolic leaf function sleafhn(l), which satisfies Eq. (6). 
Then, we discuss the relation between the hyperbolic leaf 
function and the leaf function. 
 
2 Definition of Hyperbolic Leaf Function 

In this section, Eq. (6) is discussed. By multiplying dr/dl to 
both sides of Eq. (6), the following equation is obtained: 
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By integrating both sides of Eq. (7), the following equation 

is obtained. 
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The symbol C represents the constant of integration. The 

constant C is determined by the initial conditions as follows: 
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Therefore, it is obtained as follows: 
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Using the above results and Eq. (8), the following equation 
is obtained as follows: 
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In the above equation, the positive sign “+” is demanded by 
the initial condition dr(0)/dl=1>0. Therefore, the above 
equation is as follows: 
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As the variable r is increased, the function nr 21 is 
monotonically increased. After the variables are separated, it 
is integrated from 0 to r. 
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The inverse function that satisfies the above equation is 
defined as follows: 
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In this study, the prefix “a” of the hyperbolic leaf function 
sleafhn(l) represents the inverse function. Using the above 
equation, it is obtained as follows:  
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In the case of the basis n=1, the following equation is 
obtained: 
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3 Maclaurin Series of Hyperbolic Leaf Function 

In this section, the Maclaurin series is applied to the 
hyperbolic leaf function. In the case of n=2, the function 
sleafh2(l) is expanded as follows: 
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For detailed information, see Appendix A. The symbol O 

represents the Landau symbol (the big O notation). The 
symbol O(l17) represents the order of the error.  
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Next, in the case of n=3, the hyperbolic leaf function 
sleafh3(l) can be expanded by the Maclaurin series as 
follows:  
 

2519137

2519

137
3

193648
145

728
5

14
1

!19
00009108557568 

!13
42768000

!7
360

!1
1

lOllll

lOl

llllsleafh
(20) 

 
In the case of n=4, the hyperbolic leaf function sleafh4(l) can 
be expanded by the Maclaurin series as follows:  
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In the case of n=5, the hyperbolic leaf function sleafh5(l) can 
be expanded by the Maclaurin series as follows:  
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4 Relation between Leaf Function sleafn(l) and 

Hyperbolic Leaf Function sleafhn(l)  

Using complex number i, we discuss the relation between 
the leaf function sleafn(l) and hyperbolic leaf function 
sleafhn(l). The complex variable i l is substituted for the 
variable l in the Maclaurin series of the function sleafn(l) 
(see Ref. [2]). The symbol i represents the imaginary number. 
In the case of basis: n=1, the function sleaf1(l) and sleafh1(l) 
represent the function sin(l) and sinh(l), respectively. 
Therefore, Eq. (23) is obtained as follows: 
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In the case of basis: n=2, it is obtained as follows: 
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The complex variable i l is substituted for the variable l in 
the Maclaurin series of the function sleafh2(l). 
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In the case of basis: n=3, it is obtained as follows: 
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In the case of basis: n=4, it is obtained as follows: 
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The complex variable i l is substituted for the variable l in 
the Maclaurin series of the function sleafh4(l). 
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In the case of basis: n=5, it is obtained as follows: 
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Based on the above results in the case of odd number n 
(n=2m-1 (m=1, 2, 3, )), the following equation can be 
predicted. 
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Based on the above results in the case of even number n 
(n=2m (m=1, 2, 3, )), the following equation can be 
predicted. 
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5 Relation between Leaf Function sleaf2(l) and 

Hyperbolic Leaf Function sleafh2(l)  

In the case of the basis n=2, the relation between the leaf 
function sleaf2(l) and the hyperbolic leaf function sleafh2(l) 
is derived as follows: 
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For detailed information, see Appendix B. The above 
equation also can be described as follows: 
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Using Eq. (66) in Ref. [2], the relation between the function 
cleaf2(l) and sleafh2(l) can also be described as follows: 
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6 Graph of Hyperbolic Leaf Function sleafhn(l) 

The hyperbolic leaf function sleafhn(l) is shown in Fig. 1. 
The variables r and l represent the vertical and horizontal 
axes, respectively. The hyperbolic leaf function sleafhn(l) is 
the odd function. Therefore, it is obtained as follows: 
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Without depending on the value of the basis n, the gradient 
around l=0.0 becomes 1.0 by the initial condition of Eq. (10). 

Within the domain over l=1.0, the gradient dr/dl sharply 
increases according to increase in the basis n. Except for the 
basis n=1, the limit of the variable l exists in the hyperbolic 
leaf function sleafn(l). The limit with respect to the basis n is 
defined as n (>0). The following equation is discussed: 
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The limit n with respect to the basis n is obtained by the 
following equation: 
 

,4,3,2
1

1
0 2

nldt
t nn

(38) 

 
The limit values are summarized in Table 1. The constant: 
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is substituted in Eq. (34) (see Appendix B) as follows: 
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Based on the result of Eq. (40), the relation between the 
constant 2 and the constant 2 is obtained as follows: 
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Fig. 1 Curves of the hyperbolic leaf function sleafhn(l). 

 
Table 1. Limit n of variable l with respect to the hyperbolic 
leaf function sleafhn(l). ( All results have been rounded to 
no more than six significant figures) 

Limit n Value 

1 N/A 
2 1.85407 
3 1.40218 
4 1.25946 
5 1.19057 

100 1.00703 
 
7 Extended definition of Hyperbolic Leaf Function 

sleafhn(l) 

With respect to an arbitrary variable l, the value of the leaf 
function sleafn(l) can be obtained. On the other hand, except 
for the basis: n=1, the hyperbolic leaf function sleafhn(l) 
only can be obtained within the domain of the variable: 
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Eqs. (33)–(35) are not necessarily satisfied with respect to 
the arbitrary variable l because the hyperbolic leaf function 
sleafhn(l) is not defined with respect to all domains of the 
variable l. Therefore, to satisfy the Eqs. (33)–(35) with 
respect to all domains of the variable l, the hyperbolic leaf 
function sleafhn(l) is defined as a multivalued function. The 
multiple outputs of the variable l are obtained by one input 
of the variable r. Eq. (14) is redefined as follows: 
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The parameter m represents the integer. Using Eq. (43), the 
graph of the hyperbolic leaf function is shown in Fig. 2–Fig. 
6. The vertical and the horizontal axes represent the 
variables r and l in Eq. (16), respectively.  
 

Fig. 2 Curve of the hyperbolic leaf function r=sleafh2(l). 

 
Fig. 3 Curve of the hyperbolic leaf function r=sleafh3(l). 

 
Fig. 4 Curve of the hyperbolic leaf function r=sleafh4(l). 
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Fig. 5 Curve of the hyperbolic leaf function r=sleafh5(l). 

 
Fig. 6 Curve of the hyperbolic leaf function r=sleafh100(l). 

 
8 Additional theorem of Hyperbolic Leaf Function 

sleafh2(l) 

The additional theorem of the hyperbolic leaf function 
sleafh2(l) is obtained as follows: 
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For detailed information, see Appendix D. 
 
9 Conclusion 

In the previous study, we discussed the ordinary differential 
equation, where the second derivative of a function is equal 

to the negative value of the function with the power 2n 1 
(n: natural number). Periodicity was found in the ODE 
solutions of the leaf function. 
In this study, we discuss the coupled ODE with respect to 
the leaf function, where the second derivative of a function 
is equal to the positive value of the function with the power 
2n 1 (n: natural number). Compared with the ODE in the 
previous study, the sign of the ODE in the hyperbolic leaf 
function in the present study is different. We conclude as 
follows: 
 

Using Maclaurin Series, the hyperbolic leaf function 
sleafhn(l) can be described by an infinite sum of polynomial 
terms. 

The hyperbolic leaf function sleafhn(l) has limits except for 
the function sleafh1(l).  

The relation between the leaf function sleafn(l) and the 
hyperbolic leaf function sleafhn(l) is analogous to the 
relation between the trigonometric function sin(l) and the 
hyperbolic function sinh(l). 
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Appendix A 

In the case of n=2, 3, 4, 5, the derivative and the Maclaurin 
Series of the hyperbolic leaf function are described in this 
section. First, the hyperbolic leaf function sleafh2(l) is 
expanded as the Maclaurin Series. The first derivative of the 
hyperbolic leaf function sleafh2(l) is as follows: 
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The second derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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The third derivative of the hyperbolic leaf function sleafh2(l) 
is as follows: 
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The fourth derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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The fifth derivative of the hyperbolic leaf function sleafh2(l) 
is as follows: 
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The sixth derivative of the hyperbolic leaf function sleafh2(l) 
is as follows: 
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The seventh derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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The eighth derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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The ninth derivative of the hyperbolic leaf function sleafh2(l) 
is as follows: 
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The tenth derivative of the hyperbolic leaf function sleafh2(l) 
is as follows: 
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The eleventh derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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The twelfth derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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The thirteenth derivative of the hyperbolic leaf function 
sleafh2(l) is as follows: 
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Using the derivatives of Eqs. (A1)–(A13), the Maclaurin 

Series of the hyperbolic leaf function sleafh2(l) is obtained 
as follows: 
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The symbol O represents the Landau symbol. Using the 

above equation, the second derivative with respect to the 
variable l is obtained as follows: 
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Using Eq. (A14), the following equation is obtained: 
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Eq. (A15) is equal to Eq. (A16). Therefore, the hyperbolic 
leaf function sleafh2(l) satisfies Eq. (6). Next, in the case of 
n=3, the Maclaurin Series is applied to the hyperbolic leaf 
function sleafh3(l). The first derivative of the hyperbolic leaf 
function sleafh3(l) is as follows: 
 

6
33 1 lsleafhlsleafh

dl
d (A17) 

 
The second derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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The third derivative of the hyperbolic leaf function sleafh3(l) 
is as follows: 
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The fourth derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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The fifth derivative of the hyperbolic leaf function sleafh3(l) 
is as follows: 
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The sixth derivative of the hyperbolic leaf function sleafh3(l) 
is as follows: 
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The seventh derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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The eighth derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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The ninth derivative of the hyperbolic leaf function sleafh3(l) 
is as follows: 
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The tenth derivative of the hyperbolic leaf function sleafh3(l) 
is as follows: 
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The eleventh derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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The twelfth derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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The thirteenth derivative of the hyperbolic leaf function 
sleafh3(l) is as follows: 
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Using the derivatives of Eqs. (A17)–(A29), the Maclaurin 

Series of the hyperbolic leaf function sleafh3(l) is obtained 
as follows: 
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Using the above equation, the second derivative with 

respect to the variable l is obtained as follows: 
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Using Eq. (A30), the following equation is obtained: 
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Eq. (A31) is equal to Eq. (A32). Therefore, the hyperbolic 
leaf function sleafh3(l) satisfies Eq. (6). Next, in the case of 

the basis: n=4, the Maclaurin Series is applied to the 
hyperbolic leaf function sleafh4(l). The first derivative of the 
hyperbolic leaf function sleafh4(l) is as follows: 
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The second derivative of the hyperbolic leaf function 
sleafh4(l) is as follows: 
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The third derivative of the hyperbolic leaf function sleafh4(l) 
is as follows: 
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The fourth derivative of the hyperbolic leaf function 
sleafh4(l) is as follows: 
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The fifth derivative of the hyperbolic leaf function sleafh4(l) 
is as follows: 
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The sixth derivative of the hyperbolic leaf function sleafh4(l) 
is as follows: 
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The seventh derivative of the hyperbolic leaf function 
sleafh4(l) is as follows: 
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The eighth derivative of the hyperbolic leaf function 
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sleafh4(l) is as follows: 
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The ninth derivative of the hyperbolic leaf function sleafh4(l) 
is as follows: 
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The tenth derivative of the hyperbolic leaf function sleafh4(l) 
is as follows: 
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The eleventh derivative of the hyperbolic leaf function 
sleafh4(l) is as follows: 
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The twelfth derivative of the hyperbolic leaf function 
sleafh4(l) is as follows: 
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The thirteenth derivative of the hyperbolic leaf function 
sleafh4(l) is as follows: 
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Using the derivatives of Eqs. (A33)–(A45), the Maclaurin 

Series of the hyperbolic leaf function sleafh4(l) is obtained 

as follows: 
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Using the above equation, the second derivative with 

respect to the variable l is obtained as follows: 
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Using Eq. (A46), the following equation is obtained: 
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(A48) 
Eq. (A47) is equal to Eq. (A48). Therefore, the hyperbolic 
leaf function sleafh4(l) satisfies Eq. (6). Next, in the case of 
the basis: n=5, the Maclaurin Series is applied to the 
hyperbolic leaf function sleafh5(l). The first derivative of the 
hyperbolic leaf function sleafh5(l) is as follows: 
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The second derivative of the hyperbolic leaf function 
sleafh5(l) is as follows: 
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The third derivative of the hyperbolic leaf function sleafh5(l) 
is as follows: 
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The fourth derivative of the hyperbolic leaf function 
sleafh5(l) is as follows: 
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The fifth derivative of the hyperbolic leaf function sleafh5(l) 
is as follows: 
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The sixth derivative of the hyperbolic leaf function sleafh5(l) 
is as follows: 
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The seventh derivative of the hyperbolic leaf function 
sleafh5(l) is as follows: 
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The eighth derivative of the hyperbolic leaf function 
sleafh5(l) is as follows: 
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The ninth derivative of the hyperbolic leaf function sleafh5(l) 
is as follows: 
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The tenth derivative of the hyperbolic leaf function sleafh5(l) 
is as follows: 
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The eleventh derivative of the hyperbolic leaf function 
sleafh5(l) is as follows: 
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Using the derivatives of Eqs. (A49)–(A59), the Maclaurin 
Series of the hyperbolic leaf function sleafh5(l) is obtained 
as follows: 
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Using the above equation, the second derivative with 

respect to the variable l is obtained as follows: 
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Using Eq. (A60), the following equation is obtained: 
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Eq. (A61) is equal to Eq. (A62). Therefore, the hyperbolic 

leaf function sleafh5(l) satisfies Eq. (6). 
 

Appendix B 

In this section, the relation between the leaf function 
sleaf2(l) and the hyperbolic leaf function sleafh2(l) is 
described. The following polynomial is considered. 
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The above equation is transformed as the following: 
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We only discuss about the following equation. 
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The above equation is derived with respect to the variable x. 
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On the other hand, the following equation is obtained. 
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Using the above equation, the following equation is 

obtained.  
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where the variables x and y are set as the following 
equations: 
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The above equation is differentiated with respect to the 

variable l. 
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Using the above equations, the following equation is 

obtained: 
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Eq. (B7) and Eq. (B8) satisfy Eq. (B6). Therefore, the 

following relation is obtained by Eq. (B1). 
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Solving the above equation for the hyperbolic leaf function 

sleafh2(l), the two solutions can be obtained. In the case of 

inequality 12 lsleafh , the following equation is applied. 
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In the case of the inequality 12 lsleafh , the following 

equation is applied. 
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Appendix C 

In this section, the relation between the hyperbolic function 
sinh(l) (=sleafh1(l)) and the hyperbolic leaf function 
sleafhn(l) is described. The following equation is considered. 
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Using the above equation, the following equation is 

obtained. 
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The above equation is differentiated with respect to the 

variable l. 
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The following equation is obtained by integrating the above 
equation from 0 to l. 
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Using Eqs. (C1) and (C4), the following equation is 

obtained. 
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Appendix D 

To prove the additional theorem of Eq. (44), the following 
equation is set. 
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The symbol c represents the arbitrary constant. Using Eqs. 

(D1) and (44), the following equation is obtained. 
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The right side of the above equation is defined as follows: 
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The symbol sleafh2(c) is just constant. The following 
equation is obtained by Eqs. (D2) and (D3). 
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Therefore, the function F(l1) also has to be a constant. 
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If the above equation is satisfied, the function F(l1) becomes 
a constant. To prove Eq. (D4), the function F(l1) is 
differentiated with respect to the variable l1. 
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On the other hand, the following equation is obtained. 
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By substituting Eqs. (D7) and (D8) into Eq. (D6), Eq. (D5) 
is obtained. The function F(l1) does not depend on the 
variable l1. Therefore, the following equation is obtained. 
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By substituting 0 into Eq. (D3), the following equation is 
obtained. 
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By Eqs. (D9) (D10), Eq. (D4) is obtained. The proof of Eq. 
(45) is similar with that of Eq. (44). 
 

Appendix E 

The integration of the hyperbolic leaf function: 
(sleafhn(l))n-1 is obtained as follows: 
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The proof is as follows  
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Using Eq. (E2), the following equation is obtained: 
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In the case n=1 of Eq. (E1), the following equation is 
obtained: 
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Therefore, the following equation is obtained: 
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Using Eq. (17), the above equation represents the following 
equation: 
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Appendix F 

The numerical data of the hyperbolic leaf function is 
summarized in the succeeding Tables. 
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Table 2 Numerical data of the hyperbolic leaf function sleafhn(l). 

(All results have been rounded to no more than five significant figures) 

l r (=sleafhn(l)) 

n=1 n=2 n=3 n=4 n=5 n=100 

-5.4 -110.70 -6.1639 0.2087 -0.3621 -0.6380 0.6422

-5.2 -90.633 -2.7559 0.4088 -0.1621 -0.4376 0.8422

-5.0 -74.203 -1.7609 0.6109 0.0378 -0.2376 -0.9718

-4.8 -60.751 -1.2679 0.8253 0.2378 -0.0376 -0.7718

-4.6 -49.737 -0.9514 1.0933 0.4378 0.1623 -0.5718

-4.4 -40.719 -0.7080 1.6018 0.6388 0.3623 -0.3718

-4.2 -33.335 -0.4947 -8.7394 0.8494 0.5624 -0.1718

-4.0 -27.289 -0.2920 -1.5490 1.1283 0.7646 0.0281

-3.8 -22.339 -0.0918 -1.0721 2.4892 0.9945 0.2281

-3.6 -18.285 0.1081 -0.8104 -1.2211 1.7243 0.4281

-3.4 -14.965 0.3084 -0.5975 -0.8995 -1.0832 0.6281

-3.2 -12.245 0.5115 -0.3957 -0.6828 -0.8239 0.8281

-3.0 -10.017 0.7263 -0.1956 -0.4811 -0.6190 -0.9860

-2.8 -8.1919 0.9736 0.0043 -0.2810 -0.4188 -0.7859

-2.6 -6.6947 1.2993 0.2043 -0.0810 -0.2188 -0.5859

-2.4 -5.4662 1.8155 0.4045 0.1189 -0.0188 -0.3859

-2.2 -4.4571 2.8866 0.6064 0.3189 0.1811 -0.1859

-2.0 -3.6268 6.8525 0.8203 0.5190 0.3811 0.0140

-1.8 -2.9421 -18.492 1.0862 0.7218 0.5812 0.2140

-1.6 -2.3755 -3.9342 1.5837 0.9463 0.7842 0.4140

-1.4 -1.9043 -2.1929 -15.137 1.3275 1.0217 0.6140

-1.2 -1.5094 -1.5009 -1.5660 -1.7755 2.2696 0.8140

-1.0 -1.1752 -1.1091 -1.0791 -1.0620 -1.0510 -1.0028

-0.8 -0.8881 -0.8339 -0.8153 -0.8075 -0.8039 -0.8000

-0.6 -0.6366 -0.6078 -0.6020 -0.6005 -0.6001 -0.6000

-0.4 -0.4107 -0.4010 -0.4001 -0.4000 -0.4000 -0.4000

-0.2 -0.2013 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3 Numerical data of the hyperbolic leaf function sleafhn(l). 

(All results have been rounded to no more than five significant figures) 

l r (=sleafhn(l)) 

n=1 n=2 n=3 n=4 n=5 n=100 

0.2 0.2013 0.2000 0.2000 0.2000 0.2000 0.2000

0.4 0.4107 0.4010 0.4001 0.4000 0.4000 0.4000

0.6 0.6366 0.6078 0.6020 0.6005 0.6001 0.6000

0.8 0.8881 0.8339 0.8153 0.8075 0.8039 0.8000

1.0 1.1752 1.1091 1.0791 1.0620 1.0510 1.0028

1.2 1.5094 1.5009 1.5660 1.7756 -4.8024 -0.8140

1.4 1.9043 2.1929 15.137 -1.3275 -1.0216 -0.6140

1.6 2.3755 3.9342 -1.5836 -0.9463 -0.7841 -0.4140

1.8 2.9421 18.492 -1.0861 -0.7217 -0.5812 -0.2140

2.0 3.6268 -6.8525 -0.8203 -0.5190 -0.3811 -0.0140

2.2 4.4571 -2.8866 -0.6064 -0.3189 -0.1811 0.1859

2.4 5.4662 -1.8155 -0.4044 -0.1189 0.0188 0.3859

2.6 6.6947 -1.2993 -0.2043 0.0810 0.2188 0.5859

2.8 8.1919 -0.9736 -0.0043 0.2810 0.4188 0.7859

3.0 10.017 -0.7263 0.1956 0.4811 0.6190 0.9860

3.2 12.245 -0.5115 0.3957 0.6828 0.8239 -0.8281

3.4 14.965 -0.3084 0.5975 0.8995 1.0832 -0.6281

3.6 18.285 -0.1081 0.8104 1.2211 -1.7243 -0.4281

3.8 22.339 0.0918 1.0721 -2.4892 -0.9944 -0.2281

4.0 27.289 0.2920 1.5490 -1.1283 -0.7646 -0.0281

4.2 33.335 0.4947 8.7395 -0.8494 -0.5624 0.1718

4.4 40.719 0.7080 -1.6018 -0.6388 -0.3623 0.3718

4.6 49.737 0.9514 -1.0933 -0.4378 -0.1623 0.5718

4.8 60.751 1.2679 -0.8253 -0.2378 0.0376 0.7718

5.0 74.203 1.7609 -0.6109 -0.0378 0.2376 0.9718

5.2 90.633 2.7559 -0.4088 0.1621 0.4376 -0.8422

5.4 110.70 6.1639 -0.2087 0.3621 0.6380 -0.6422
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