Special Function: Hyperbolic Leaf Function $r=$ cleafh $_{n}(l)$ (Second Report)

Kazunori Shinohara*

Summary

In previous reports, the leaf function sleafh $_{n}(l)$ is defined. This function is satisfied by the ordinary differential equation (ODE) and the following initial conditions:
$\frac{d^{2} r(l)}{d l^{2}}=n \cdot r(l)^{2 n-1} \quad n=1,2,3, \cdots$
$r(0)=0$
$\frac{d r(0)}{d l}=1$

Variable $r(l)$ consisting of parameter l represents the hyperbolic leaf functions. Parameter n represents the basis (the natural number). In the case of the basis $n=1$, the hyperbolic leaf function $\operatorname{sleafh}_{l}(l)$ represents the hyperbolic function $\sinh (l)$. With respect to an arbitrary basis n, the hyperbolic leaf function $\operatorname{seafl}_{n}(l)$ is closely related to the leaf function $\operatorname{sleaf}_{n}(l)$.
In this paper, the hyperbolic leaf function $\operatorname{cleafh}_{n}(l)$ is defined. This function is satisfied by the abovementioned ordinary differential equation and the following initial conditions:

$$
\begin{aligned}
& \frac{d^{2} r(l)}{d l^{2}}=n \cdot r(l)^{2 n-1} \quad n=1,2,3, \cdots \\
& r(0)=1 \\
& \frac{d r(0)}{d l}=0
\end{aligned}
$$

Compared to the hyperbolic leaf function sleaf $h_{n}(l)$, only the initial condition of the hyperbolic leaf function cleafh $_{n}(l)$ is different. In the case of the basis $n=1$, the function represents the hyperbolic function $\cosh (l)$. This function is closely related to other functions cleaf $_{n}(l)$, sleaf $_{n}(l)$, and sleaf $h_{n}(l)$.

Keywords : Leaf function, Jacobi elliptic functions, Ordinary differential equation, Trigonometric function, Hyperbolic function, Square root of polynomial, Elliptic integral

[^0]
1. Introduction

In this paper, the hyperbolic leaf function cleafh $_{n}(l)$ is presented. This function is satisfied by the ordinary differential equation (ODE) and the following initial conditions:

$$
\begin{align*}
& \frac{d^{2} r(l)}{d l^{2}}=n \cdot r(l)^{2 n-1} \quad n=1,2,3, \cdots \tag{1}\\
& r(0)=1 \quad(\text { or } \quad r=1, \quad l=0) \tag{2}\\
& \frac{d r(0)}{d l}=0 \tag{3}
\end{align*}
$$

Compared to the hyperbolic leaf function sleafh $_{n}(l)$, only the initial condition of the hyperbolic leaf function cleafh $_{n}(l)$ is different. In the case of the basis $n=1$, the function represents the hyperbolic function $\cosh (l)$.
2. Definition of Hyperbolic Leaf Function cleafh $_{n}(l)$

In this section, we discuss about Eq. (1). The basis n represents the natural number 1, 2, 3, \cdots By multiplying $d r / d l$ to both sides of Eq. (1), the following equation is obtained:
$\frac{d r}{d l} \frac{d^{2} r}{d l^{2}}=n r^{2 n-1} \frac{d r}{d l} \quad n=1,2,3, \cdots$

By integrating both sides of the above equation, the following equation is obtained:
$\frac{1}{2}\left(\frac{d r}{d l}\right)^{2}=\frac{1}{2} r^{2 n}+C \quad n=1,2,3, \cdots$
C represents the constant of integration. C is determined by the initial conditions (Eqs. (2)-(3)). Therefore, the equation is as follows:
$C=-\frac{1}{2}$

Using the above results and Eq. (5), the following equation is obtained:

$$
\begin{equation*}
\frac{d r}{d l}= \pm \sqrt{r^{2 n}-1} \quad(r \geq 1) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { cleafh }_{1}(l)=\cosh (l) \tag{16}
\end{equation*}
$$

In the inequality $l<0$, based on the Eq. (7), the following equation is defined:

$$
\begin{equation*}
l=-\int_{1}^{r} \frac{1}{\sqrt{t^{2 n}-1}} d t \quad r \geq 1 \tag{17}
\end{equation*}
$$

Using the above equation, the following equation is obtained:

$$
\begin{equation*}
r=\text { cleafh }_{n}(-l) \tag{18}
\end{equation*}
$$

3. Graph of Hyperbolic Leaf Function: cleafh $_{n}(l)$

The hyperbolic leaf function is shown in Fig. 1.

Fig. 1 Curve of the hyperbolic leaf function cleafh $_{n}(l)$

Variable r and variable l represent the vertical axis and the horizontal axis, respectively. The hyperbolic leaf function $c^{c l e a f h} h_{n}(l)$ is an even function. Therefore, it is obtained as follows:
$\operatorname{cleafh}_{n}(-l)=\operatorname{cleafh}_{n}(l) \quad(n=1,2,3, \cdots)$

In the basis $n=1$, the hyperbolic leaf function $\operatorname{cleafh}_{1}(l)$ represents the hyperbolic function $\cosh (l)$. With respect to arbitrary basis n, the gradient of the function $c l e a f h ~_{n}(l)$ becomes 0.0 at $l=0.0$. It is based on the initial conditions (Eqs. (2) and (3)). As the basis n increases, the gradients of the curves become sharp. The hyperbolic leaf function cleafh $_{n}(l)$ has the limit η_{n} except for the basis $n=1$. We define the limit as follows:
$\lim _{l \rightarrow \eta_{n}}$ cleafh $_{n}(l)=\infty \quad(n=2,3, \cdots)$

The limit of the arbitrary basis n is obtained as follows:
$\eta_{n}=\int_{1}^{\infty} \frac{1}{\sqrt{t^{2 n}-1}} d t(=l) \quad(n=2,3, \cdots)$

The values of the limit η_{n} are summarized in Table 1.

Table 1 Limit η_{n} of variable l with respect to the hyperbolic leaf function cleafh $h_{n}(l)$ (All results have been rounded to no more than six significant figures)

Limit η_{n}	Value
η_{1}	$\mathrm{~N} / \mathrm{A}$
η_{2}	1.31102
η_{3}	0.70109
η_{4}	0.48197
η_{5}	0.36790
η_{100}	0.01581

In the basis $n=2$, the hyperbolic leaf function cleafh $_{n}(l)$ become 0 if the following equation is satisfied:
$l=\frac{\pi_{2}}{2}$
where the constant π_{2} is described in Ref. [2]. The following equation is obtained by substituting Eq. (22) in Eq. (15):
$\operatorname{cleafh}_{2}\left(\frac{\pi_{2}}{2}\right)=\infty$

Based on the above equation, we can predict the limit by following equation:
$l=\eta_{2}=\frac{\pi_{2}}{2} \quad\left(=\int_{1}^{\infty} \frac{1}{\sqrt{t^{4}-1}} d t=\int_{0}^{1} \frac{1}{\sqrt{1-t^{4}}} d t\right)$

In the basis $n=3$, we can predict the limit by the following equation:
$l=\zeta_{3}=2 \eta_{3}$
$\zeta_{3}=\int_{0}^{\infty} \frac{1}{\sqrt{1+t^{6}}} d t$
$2 \eta_{3}=2 \int_{1}^{\infty} \frac{1}{\sqrt{t^{6}-1}} d t$

Based on the results of the numerical integration, we can find the above relation. The results of the limit are as follows:
$\zeta_{3}=2 \eta_{3}=$ 1.4021821053254542611750190790502941354630222054239

Using Eqs. (26) and (27), the limits ζ_{3} and $2 \times \eta_{3}$ are calculated by fifty digit numbers, respectively. The limit ζ_{3} matches the limit $2 \times \eta_{3}$ by fifty digit numbers.

Limit η_{3} is also obtained by the following equation:
$l=\eta_{3}=\int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{1+t^{6}}} d t$

Using the above equation, the following equation is obtained:
$2 \eta_{3}=\int_{0}^{\infty} \frac{1}{\sqrt{1+t^{6}}} d t=\int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{1+t^{6}}} d t+\int_{\frac{1}{\sqrt{2}}}^{\infty} \frac{1}{\sqrt{1+t^{6}}} d t$
$=\eta_{3}+\int_{\frac{1}{\sqrt{2}}}^{\infty} \frac{1}{\sqrt{1+t^{6}}} d t$

Finally, the following equation is obtained:
$\eta_{3}=\int_{\frac{1}{\sqrt{2}}}^{\infty} \frac{1}{\sqrt{1+t^{6}}} d t$

Eq. (29) represents the following equation:
$\operatorname{sleafh}_{3}\left(\eta_{3}\right)=\frac{1}{\sqrt{2}}$

4. Extended Definition of Hyperbolic Leaf Function cleafh $_{n}(l)$

With respect to an arbitrary variable l, the value of the leaf function $\operatorname{cleaf}_{n}(l)$ can be obtained. On the other hand, except for the basis $n=1$, the hyperbolic leaf function $\operatorname{cleafh}_{n}(l)$ can only be obtained within the domain of the variable:

$$
\begin{equation*}
-\zeta_{n}<l<\zeta_{n} \quad(n=2,3,4, \cdots) \tag{33}
\end{equation*}
$$

The function is not supported for arbitrary variable l. Therefore, the hyperbolic leaf function is redefined as the multivalued function, so that the arbitrary variable r can correspond to the arbitrary variable l

Fig. 2 Curve of the hyperbolic leaf function $r=\operatorname{cleafh}_{2}(l)$

In the case of the basis $n=2$, the curve of the hyperbolic leaf function is shown in Fig. 2. Numbers (1)-(10) represent the domain. By separating domains (1)-(10) with respect to the variable l, the relation between variable r and variable l is redefined. First, in the domain (1), gradient $d l / d r$ becomes negative.
$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad-5 \eta_{2}<l \leq-4 \eta_{2}\right)$

The initial condition in the domain (1) is defined as the initial condition: $l(1)=-4 \eta_{2}$. The above equation is integrated from the number 1 to the variable r.

$$
\begin{align*}
& l(r)=l(1)-\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t=-4 \eta_{2}-\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t \tag{35}\\
& \quad\left(r \geq 1, \quad-5 \eta_{2}<l \leq-4 \eta_{2}\right)
\end{align*}
$$

In the domain (2), gradient $d l / d r$ becomes positive.
$\frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad-4 \eta_{2} \leq l<-3 \eta_{2}\right)$

The initial condition in domain (2) is defined as the initial condition: $l(1)=-4 \eta_{2}$. The above equation is integrated from the number l to the variable r.

$$
\begin{align*}
& l(r)=l(1)+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t=-4 \eta_{2}+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t \tag{37}\\
& \quad\left(r \geq 1, \quad-4 \eta_{2} \leq l<-3 \eta_{2}\right)
\end{align*}
$$

In the domain (3), gradient $d l / d r$ becomes positive.
$\frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \leq-1, \quad-3 \eta_{2}<l \leq-2 \eta_{2}\right)$

The initial condition in the domain (3) is defined as the initial condition: $l(-1)=-2 \eta_{2}$. The above equation is integrated from the number -1 to the variable r.

$$
\begin{align*}
& l(r)=l(-1)+\int_{-1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t=-2 \eta_{2}-\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \tag{39}\\
& \quad\left(r \leq-1, \quad-3 \eta_{2}<l \leq-2 \eta_{2}\right)
\end{align*}
$$

In the domain (4), gradient $d l / d r$ becomes negative.
$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \leq-1, \quad-2 \eta_{2} \leq l<-\eta_{2}\right)$

The initial condition in the domain (4) is defined as the initial condition: $l(-1)=-2 \eta_{2}$. The above equation is integrated from the number -1 to the variable r.

$$
\begin{align*}
& l(r)=l(-1)+\int_{-1}^{r}\left(-\frac{1}{\sqrt{t^{4}-1}}\right) d t=-2 \eta_{2}+\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \tag{41}\\
& \quad\left(r \leq-1, \quad-2 \eta_{2} \leq l<-\eta_{2}\right)
\end{align*}
$$

In the domain (5), gradient $d l / d r$ becomes negative.
$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad-\eta_{2}<l \leq 0\right)$

The initial condition in the domain (5) is defined as the initial condition: $l(1)=0$. The above equation is integrated
from the number l to the variable r.

$$
\begin{align*}
& l(r)=l(1)+\int_{1}^{r}\left(-\frac{1}{\sqrt{t^{4}-1}}\right) d t=\int_{r}^{1} \frac{1}{\sqrt{t^{4}-1}} d t \tag{43}\\
& \quad\left(r \geq 1, \quad-\eta_{2}<l \leq 0\right)
\end{align*}
$$

In the domain (6), gradient $d l / d r$ becomes positive.
$\frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad 0 \leq l<\eta_{2}\right)$

The initial condition in domain (6) is defined as the initial condition: $l(1)=0$. The above equation is integrated from the number l to the variable r.

$$
\begin{align*}
& l(r)=l(1)+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t=\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t \tag{45}\\
& \quad\left(r \geq 1, \quad 0 \leq l<\eta_{2}\right)
\end{align*}
$$

In the domain (7), gradient $d l / d r$ becomes positive.
$\frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad \eta_{2}<l \leq 2 \eta_{2}\right)$

The initial condition in the domain (7) is defined as the initial condition: $l(-1)=2 \eta_{2}$. The above equation is integrated from the number -1 to the variable r.

$$
\begin{align*}
& l(r)=l(-1)+\int_{-1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t=2 \eta_{2}-\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \tag{47}\\
& \quad\left(r \leq-1, \quad \eta_{2}<l \leq 2 \eta_{2}\right)
\end{align*}
$$

In the domain (8), gradient $d l / d r$ becomes negative.
$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \leq-1, \quad 2 \eta_{2} \leq l<3 \eta_{2}\right)$

The initial condition in the domain (8) is defined as the initial condition: $l(-1)=2 \eta_{2}$. The above equation is integrated from the number -1 to the variable r.

$$
\begin{align*}
& l(r)=l(-1)+\int_{-1}^{r}\left(-\frac{1}{\sqrt{t^{4}-1}}\right) d t=2 \eta_{2}+\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \tag{49}\\
& \quad\left(r \leq-1, \quad 2 \eta_{2} \leq l<3 \eta_{2}\right)
\end{align*}
$$

In the domain (9), gradient $d l / d r$ becomes negative.
$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad 3 \eta_{2}<l \leq 4 \eta_{2}\right)$

The initial condition in the domain (9) is defined as the initial condition: $l(1)=4 \eta_{2}$. The above equation is integrated from the number 1 to the variable r.
$l(r)=l(1)+\int_{1}^{r}\left(-\frac{1}{\sqrt{t^{4}-1}}\right) d t=4 \eta_{2}-\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t$
$\left(r \geq 1, \quad 3 \eta_{2}<l \leq 4 \eta_{2}\right)$

In the domain (10), gradient $d l / d r$ becomes positive.
$\frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \quad\left(r \geq 1, \quad 4 \eta_{2} \leq l<5 \eta_{2}\right)$

The initial condition in the domain (10) is defined as the initial condition: $l(1)=4 \eta_{2}$. The above equation is integrated from the number l to the variable r.

$$
\begin{align*}
& l(r)=l(1)+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t=4 \eta_{2}+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t \tag{53}\\
& \quad\left(r \geq 1, \quad 4 \eta_{2} \leq l<5 \eta_{2}\right)
\end{align*}
$$

With respect to arbitrary variable l, the relation between variable r and variable l is summarized in Table 2. The symbols n and m represent the basis and the integer number, respectively.
In the case of the basis $n=2,3,4,5$, and 100, the graphs are shown from Fig. 2 to Fig. 6, respectively. The vertical axis and the horizontal axis represent variable r and variable l, respectively. Alternatively, both curves of a downward convex and an upward convex exist. In the case of a small basis n, the curve tends to be smooth and rounded. In the case of a large basis n, the curve tends to be sharp and angulated.

Table 2 Relation between variable r and variable l (Based on the hyperbolic leaf function cleafh $_{2}(l)$) (except for $n=1$)

Domain	Domain of cleafh ${ }_{2}(l)$	Initial condition	Calculation formula and derivative
(1)	$-5 \eta_{2}<l \leqq-4 \eta_{2}$ $r \geqq 1$	$l=-4 \eta_{2}$ $r=1$	$l(r)=-4 \eta_{2}-\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t$ $\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}}$
(2)	$-4 \eta_{2} \leqq l<-3 \eta_{2}$ $r \geqq 1$	$\begin{aligned} & l=-4 \eta_{2} \\ & r=1 \end{aligned}$	$l(r)=-4 \eta_{2}+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t$ $\frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}}$
(3)	$-3 \eta_{2}<l \leqq-2 \eta_{2}$ $r \leqq-1$	$\begin{gathered} l=-2 \eta_{2} \\ r=-1 \end{gathered}$	$\begin{aligned} & l(r)=-2 \eta_{2}-\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \\ & \frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \end{aligned}$
(4)	$-2 \eta_{2} \leqq l<-\eta_{2}$ $r \leqq-1$	$\begin{gathered} l=-2 \eta_{2} \\ r=-1 \end{gathered}$	$\begin{aligned} & l(r)=-2 \eta_{2}+\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \\ & \frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \end{aligned}$
(5)	$-\eta_{2}<l \leqq 0$ $r \geqq 1$	$l=0$ $r=1$	$l(r)=-\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t$ $\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}}$
(6)	$0 \leqq l<\eta_{2}$ $r \geqq 1$	$l=0$ $r=1$	$\begin{aligned} & l(r)=\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t \\ & \frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \end{aligned}$
(7)	$\eta_{2}<l \leqq 2 \eta_{2}$ $r \leqq-1$	$\begin{aligned} & l=2 \eta_{2} \\ & r=-1 \end{aligned}$	$\begin{aligned} & l(r)=2 \eta_{2}-\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \\ & \frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \end{aligned}$
(8)	$2 \eta_{2} \leqq l<3 \eta_{2}$ $r \leqq-1$	$\begin{aligned} & l=2 \eta_{2} \\ & r=-1 \end{aligned}$	$\begin{aligned} & l(r)=2 \eta_{2}+\int_{r}^{-1} \frac{1}{\sqrt{t^{4}-1}} d t \\ & \frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}} \end{aligned}$
(9)	$3 \eta_{2}<l \leqq 4 \eta_{2}$ $r \geqq 1$	$l=4 \eta_{2}$ $r=1$	$l(r)=4 \eta_{2}-\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t$ $\frac{d l}{d r}=-\frac{1}{\sqrt{r^{4}-1}}$
(10)	$4 \eta_{2} \leqq l<5 \eta_{2}$ $r \geqq 1$	$\begin{aligned} & l=4 \eta_{2} \\ & r=1 \end{aligned}$	$\begin{aligned} & l(r)=4 \eta_{2}+\int_{1}^{r} \frac{1}{\sqrt{t^{4}-1}} d t \\ & \frac{d l}{d r}=\frac{1}{\sqrt{r^{4}-1}} \end{aligned}$

Table 3 Relation between variable r and variable l (Based on the hyperbolic leaf function cleafh $_{n}(l)$) (except for $\left.n=1\right)$

Domain of cleafh (l)	Initial condition	Calculation formula and derivative
$(4 m-1) \eta_{n}<l \leqq 4 m \eta_{n}$	$l=4 m \eta_{n}$	$l(r)=4 m \eta_{n}-\int_{1}^{r} \frac{1}{\sqrt{t^{2 n}-1}} d t$
$r \geqq$	$r=1$	$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{2 n}-1}}$
$4 m \eta_{n} \leqq l<(4 m+l) \eta_{n}$	$l=4 m \eta_{n}$	$l(r)=4 m \eta_{n}+\int_{1}^{r} \frac{1}{\sqrt{t^{2 n}-1}} d t$
$r \leqq-1$	$r=1$	$\frac{d l}{d r}=\frac{1}{\sqrt{r^{2 n}-1}}$
$(4 m+1) \eta_{n}<l \leqq(4 m+2) \eta_{n}$	$l=(4 m+2) \eta_{n}$	$l(r)=(4 m+2) \eta_{n}-\int_{r}^{-1} \frac{1}{\sqrt{t^{2 n}-1}} d t$
$r=-1$	$\frac{d l}{d r}=\frac{1}{\sqrt{r^{2 n}-1}}$	
$(4 m+2) \eta_{n}<l \leqq(4 m+3) \eta_{n}$	$l=(4 m+2) \eta_{n}$	$l(r)=(4 m+2) \eta_{n}+\int_{r}^{-1} \frac{1}{\sqrt{t^{2 n}-1}} d t$
$r \leqq-1$	$r=-1$	$\frac{d l}{d r}=-\frac{1}{\sqrt{r^{2 n}-1}}$

Fig. 3 Curve of the hyperbolic leaf function $r=\operatorname{cleafh}_{3}(l)$

Fig. 4 Curve of the hyperbolic leaf function $r=$ cleafh $_{4}(l)$

Fig. 5 Curve of hyperbolic leaf function $r=\operatorname{cleafh}_{5}(l)$

Fig. 6 Curve of the hyperbolic leaf function $r=$ cleafh $_{100}(l)$

5. Relation Between Hyperbolic Leaf Function cleafh $_{n}(l)$ and Other Function

In the case of the basis $n=1$, the relation between the functions cleafh $_{l}(l)$ and $\operatorname{sleafh}_{l}(l)$ is obtained as follows:
$\left(\operatorname{cleafh}_{1}(l)\right)^{2}-\left(\text { sleafh }_{1}(l)\right)^{2}=1$

The above equation represents the relation between the hyperbolic function $\cosh (l)$ and the hyperbolic function $\sinh (l)$.

In the case of the basis $n=2$, the following equations are obtained:
$\operatorname{cleaf}_{2}(l) \cdot$ cleafh $_{2}(l)=1$
$\operatorname{cleafh}_{2}(\sqrt{2} l)=\frac{1+\left(\text { sleafh }_{2}(l)\right)^{2}}{1-\left(\text { sleafh }_{2}(l)\right)^{2}}$

For more information, see appendix B and C. In the case of the basis $n=3$, the following equations are obtained:

$$
\begin{align*}
& \left(\text { cleafh }_{3}(l)\right)^{2}-\left(\text { sleafh }_{3}(l)\right)^{2}-2\left(\text { cleafh }_{3}(l)\right)^{2}\left(\text { sleafh }_{3}(l)\right)^{2}=1 \\
& \quad(4 m-1) \eta_{3}<l<(4 m+1) \eta_{3} \tag{57}
\end{align*}
$$

The functions cleafh $_{3}(l)$ and $\operatorname{sleafh}_{3}(l)$ are defined as the multivalued function with periodicity η_{3} and periodicity ζ_{3}, respectively. Periodicity η_{3} does not match periodicity ζ_{3}. Periodicity η_{3} of the function $\operatorname{cleafh}_{3}(l)$ is shorter than periodicity ζ_{3} of the function sleafh $_{3}(l)$. The above equation is satisfied in the partial domain: $\left((4 m-1) \eta_{3}<l<(4 m+1) \eta_{3}\right.$, m : integer number).

6. Addition Theorem of Leaf Function

The addition theorem of the hyperbolic leaf function is described in this section. In the case of the basis $n=1$, the following equation is obtained:

$$
\begin{align*}
& \text { sleafh }_{1}\left(l_{1}+l_{2}\right)=\text { sleafh }_{1}\left(l_{1}\right) \cdot \text { cleafh }_{1}\left(l_{2}\right)+\text { cleafh }_{1}\left(l_{1}\right) \cdot \text { sleafh }_{1}\left(l_{2}\right) \\
& \text { cleafh }_{1}\left(l_{1}+l_{2}\right)=\text { cleafh }_{1}\left(l_{1}\right) \cdot \text { cleafh }_{1}\left(l_{2}\right)+\text { sleafh }_{1}\left(l_{1}\right) \cdot \text { sleafh }_{1}\left(l_{2}\right) \tag{58}
\end{align*}
$$

These equations represent the relation between the hyperbolic function $\sinh (l)$ and hyperbolic function $\cosh (l)$. In the case of the basis $n=2$, the following equation is obtained:
sleafh ${ }_{2}\left(l_{1}+l_{2}\right)=$
$\frac{\text { sleafh }_{2}\left(l_{1}\right) \sqrt{1+\left(\text { sleafh }_{2}\left(l_{2}\right)\right)^{4}}+\text { sleafh }_{2}\left(l_{2}\right) \sqrt{1+\left(\text { sleafh }_{2}\left(l_{1}\right)\right)^{4}}}{1-\left(\text { sleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { sleafh }_{2}\left(l_{2}\right)\right)^{2}}$
cleafh ${ }_{2}\left(l_{1}+l_{2}\right)$
$=\frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(l_{2}\right)+\text { cleafh }_{2}^{\prime}\left(l_{1}\right) \text { cleafh }{ }_{2}^{\prime}\left(l_{2}\right)}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}}$

In the above equation, the superscript prime of the hyperbolic leaf function represents the derivative with respect to variable l. Based on the data from table 3, the sign (plus or minus) of the derivative is decided. In the case of the domain: $4 m \eta_{2} \leqq l_{1} \leqq(4 m+2) \eta_{2}$ and $4 m \eta_{2} \leqq l_{2} \leqq(4 m$ $+2) \eta_{2}$ (m : integer), the following equation is obtained:
cleafh $\left._{2}^{\prime}\left(l_{1}\right)=\sqrt{(\text { cleafh }}{ }_{2}\left(l_{1}\right)\right)^{4}-1$.
cleafh $_{2}^{\prime}\left(l_{2}\right)=\sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}$
cleafh $_{2}\left(l_{1}+l_{2}\right)$
$=\frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(l_{2}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}}$

In the case of the domain: $4 m \eta_{2} \leqq l_{1} \leqq(4 m+2) \eta_{2}$ and ($4 m$ $+2) \eta_{2} \leqq l_{2} \leqq(4 m+4) \eta_{2}$, the following equation is obtained:
cleafh $_{2}^{\prime}\left(l_{1}\right)=\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1}$
cleafh ${ }_{2}^{\prime}\left(l_{2}\right)=-\sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}$
cleafh ${ }_{2}\left(l_{1}+l_{2}\right)$
$=\frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(l_{2}\right)-\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}}$

In the case of the domain: $(4 m+2) \eta_{2} \leqq l_{1} \leqq(4 m+4) \eta_{2}$ and $4 m \eta_{2} \leqq l_{2} \leqq(4 m+2) \eta_{2}$, the following equation is obtained:

$$
\begin{align*}
& \text { cleafh }_{2}^{\prime}\left(l_{1}\right)=-\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \tag{68}\\
& \text { cleafh }_{2}^{\prime}\left(l_{2}\right)=\sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1} \tag{69}
\end{align*}
$$

cleafh $h_{2}\left(l_{1}+l_{2}\right)$
$=\frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(l_{2}\right)-\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}}$

In the case of the domain: $(4 m+2) \eta_{2} \leqq l_{1} \leqq(4 m+4) \eta_{2}$ and $(4 m+2) \eta_{2} \leqq l_{2} \leqq(4 m+4) \eta_{2}$, the following equation is obtained:

$$
\begin{equation*}
\text { cleafh }_{2}^{\prime}\left(l_{1}\right)=-\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \tag{71}
\end{equation*}
$$

cleafh $_{2}^{\prime}\left(l_{2}\right)=-\sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}$
cleafh $h_{2}\left(l_{1}+l_{2}\right)$
$=\frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(l_{2}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}}$

7. Maclaurin Series of Hyperbolic Leaf Function

In this section, the Maclaurin series is applied to the hyperbolic leaf function. In the case of $n=2$, the function cleafh $_{2}(l)$ is expanded as follows:
cleafh $_{2}(l)=1+l^{2}+\frac{1}{2} l^{4}+\frac{3}{10} l^{6}+\frac{7}{40} l^{8}+O\left(l^{10}\right)$

For more information, see Appendix A. Symbol $O\left(l^{10}\right)$ represents the Landau symbol (the big O notation).
$\lim _{l \rightarrow 0} \frac{O\left(l^{10}\right)}{l^{10}}=\frac{\operatorname{cleafh}_{2}(l)-\left(1+l^{2}+\frac{1}{2} l^{4}+\frac{3}{10} l^{6}+\frac{7}{40} l^{8}\right)}{l^{10}}=\frac{61}{600}$

Subsequently, in the case of $n=3$, the hyperbolic leaf function cleafh $_{3}(l)$ can be expanded by the Maclaurin series as follows:
cleafh $_{3}(l)=1+\frac{3}{2} l^{2}+\frac{15}{8} l^{4}+\frac{51}{16} l^{6}+\frac{5085}{896} l^{8}+O\left(l^{10}\right)$

In the case of $n=4$, the hyperbolic leaf function cleafh $_{4}(l)$ can be expanded by the Maclaurin series as follows:
cleafh $_{4}(l)=1+2 l^{2}+\frac{14}{3} l^{4}+\frac{140}{9} l^{6}+\frac{502}{9} l^{8}+O\left(l^{10}\right)$

In the case of $n=5$, the hyperbolic leaf function $\operatorname{cleafh}_{5}(l)$ can be expanded by the Maclaurin series as follows:
cleafh $_{5}(l)=1+\frac{5}{2} l^{2}+\frac{75}{8} l^{4}+\frac{825}{16} l^{6}+\frac{277125}{896} l^{8}+O\left(l^{10}\right)$
8. Relation Between Leaf Function cleaf $_{n}(l)$ and Hyperbolic Leaf Function cleafh $_{n}(l)$

Using complex numbers, the relation between leaf function cleaf $_{n}(l)$ and hyperbolic leaf function cleafh $_{n}(l)$ is shown. The complex variable $i \cdot l$ is substituted for the variables l in the Maclaurin series of both functions cleaf $_{n}(l)$ (See Ref.[2]) and cleafh $_{n}(l)$. Symbol i represents the imaginary number. In the case of the basis $n=1$, the function cleaf $_{l}(l)$ and the function $\operatorname{cleafh}_{l}(l)$ represent the function $\cos (l)$ and the function $\cosh (l)$, respectively. Therefore, the following equation is obtained:
cleaf $_{1}(i \cdot l)=\operatorname{cleafh}_{1}(l) \quad(\cos (i \cdot l)=\cosh (l))$

In the case of the basis $n=2$, the following equation is obtained:

$$
\begin{align*}
& \text { cleafh }_{2}(i \cdot l) \\
& =1+(i \cdot l)^{2}+\frac{1}{2}(i \cdot l)^{4}+\frac{3}{10}(i \cdot l)^{6}+\frac{7}{40}(i \cdot l)^{8}+O\left((i \cdot l)^{10}\right) \tag{80}\\
& =1+i^{2} \cdot l^{2}+\frac{1}{2} i^{4} \cdot l^{4}+\frac{3}{10} i^{6} \cdot l^{6}+\frac{7}{40} i^{8} \cdot l^{8}+O\left(i^{10} \cdot l^{10}\right) \\
& =1-l^{2}+\frac{1}{2} l^{4}-\frac{3}{10} l^{6}+\frac{7}{40} l^{8}-O\left(l^{10}\right)=\text { cleaf }_{2}(l)
\end{align*}
$$

In the case of the basis $n=3$, the following equation is obtained:

$$
\begin{align*}
& \text { cleafh }_{3}(i \cdot l) \\
& =1+\frac{3}{2} i^{2} \cdot l^{2}+\frac{15}{8} i^{4} \cdot l^{4}+\frac{51}{16} i^{6} \cdot l^{6}+\frac{5085}{896} i^{8} \cdot l^{8}+O\left(i^{10} \cdot l^{10}\right) \\
& =1-\frac{3}{2} l^{2}+\frac{15}{8} l^{4}-\frac{51}{16} l^{6}+\frac{5085}{896} l^{8}-O\left(l^{10}\right)=\operatorname{cleaf}_{3}(l) \tag{81}
\end{align*}
$$

In the case of the basis $n=4$, the following equation is obtained:

$$
\begin{align*}
& \operatorname{cleafh}_{4}(i \cdot l) \\
& =1+2 i^{2} \cdot l^{2}+\frac{14}{3} i^{4} \cdot l^{4}+\frac{140}{9} i^{6} \cdot l^{6}+\frac{502}{9} i^{8} \cdot l^{8}+O\left(i^{10} \cdot l^{10}\right) \\
& =1-2 l^{2}+\frac{14}{3} l^{4}-\frac{140}{9} l^{6}+\frac{502}{9} l^{8}-O\left(l^{10}\right)=\operatorname{cleaf}_{4}(l) \tag{82}
\end{align*}
$$

In the case of the basis $n=5$, the following equation is
obtained:
cleafh $_{5}(i \cdot l)$
$=1+\frac{5}{2} i^{2} \cdot l^{2}+\frac{75}{8} i^{4} \cdot l^{4}+\frac{825}{16} i^{6} \cdot l^{6}+\frac{277125}{896} i^{8} \cdot l^{8}+O\left(i^{10} \cdot l^{10}\right)$
$=1-\frac{5}{2} l^{2}+\frac{75}{8} l^{4}-\frac{825}{16} l^{6}+\frac{277125}{896} l^{8}-O\left(l^{10}\right)=$ cleaf $_{5}(l)$

Based on the above results, the following equation can be predicted:
$\operatorname{cleafh}_{n}(i \cdot l)=\operatorname{cleaf}_{n}(l)$

9. Conclusion

In this report, the hyperbolic leaf function: cleafh $_{n}(l)$ is defined. The second derivative of the function is equal to the positive operator of the function with power $2 n-1$ (n : natural number). The conclusions are summarized as follows:

- In the case of $n=1$, the function: cleafh $_{l}(l)$ represents the hyperbolic function: $\cosh (l)$.
- As number n increases, the smooth curve of the function tends to be a convex or concave curve.
- In the case of the condition $n \geqq 2$, the function cleafh $_{n}(l)$ has the limit with respect to variable l.
- The equation between the hyperbolic leaf function and the leaf function is formulated by using the imaginary number.

References

[1] Kazunori Shinohara, Special function: Leaf Function $r=$ sleaf $_{n}(l)$ (First report), Bulletin of Daido University, 51(2015), pp. 23-38.
[2] Kazunori Shinohara, Special function: Leaf Function $r=$ cleaf $_{n}(l)$ (Second report), Bulletin of Daido University, 51(2015), pp. 39-68.
[3] Kazunori Shinohara, Special function: Hyperbolic Leaf Function $r=\operatorname{sleafh}_{n}(l)$ (First report), Bulletin of Daido University, 52(2016), pp. 65-80.

Appendix A

In the case of $n=2,3,4,5$, the derivative and the Maclaurin series of the hyperbolic leaf function are described in this section. First, the hyperbolic leaf function: cleafh $_{2}(l)$ is expanded as the Maclaurin series. The first derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d}{d l}$ cleafh $_{2}(l)=\sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}$

The second derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{2}}{d l^{2}} \operatorname{cleafh}_{2}(l)=2 \cdot\left(\operatorname{cleafh}_{2}(l)\right)^{3}$

The third derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{3}}{d l^{3}} \operatorname{cleafh}_{2}(l)=6 \cdot\left(\text { cleafh }_{2}(l)\right)^{2} \cdot \sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}$

The fourth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{4}}{d l^{4}}$ cleafh $_{2}(l)=12 \cdot$ cleafh $_{2}(l) \cdot\left(2\left(\text { cleafh }_{2}(l)\right)^{4}-1\right)$

The fifth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{5}}{d l^{5}}$ cleafh $_{2}(l)=12 \cdot\left(10 \cdot\left(\text { cleafh }_{2}(l)\right)^{4}-1\right) \sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}$

The sixth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{6}}{d l^{6}} \operatorname{cleafh}_{2}(l)=72\left(\text { cleafh }_{2}(l)\right)^{3}\left(10\left(\text { cleafh }_{2}(l)\right)^{4}-7\right)$

The seventh derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{7}}{d l^{7}}$ cleafh $_{2}(l)$
$=504\left(\text { cleafh }_{2}(l)\right)^{2}\left(10\left(\text { cleafh }_{2}(l)\right)^{4}-3\right) \sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}$

The eighth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{8}}{d l^{8}}$ cleafh $_{2}(l)$
$=1008$ cleafh $_{2}(l)\left(3-36\left(\text { cleafh }_{2}(l)\right)^{4}+40\left(\text { cleafh }_{2}(l)\right)^{8}\right)$

The ninth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{9}}{d l^{9}}$ cleafh $_{2}(l)$
$=3024\left(1-60\left(\text { cleafh }_{2}(l)\right)^{4}+120\left(\text { cleafh }_{2}(l)\right)^{8}\right) \sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}$

The tenth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{10}}{d l^{10}}$ cleafh $_{2}(l)$
$=6048\left(\text { cleafh }_{2}(l)\right)^{3}\left(121-660\left(\text { cleafh }_{2}(l)\right)^{4}+600\left(\text { cleafh }_{2}(l)\right)^{8}\right)$

The eleventh derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{11}}{d l^{11}} \operatorname{cleafh}_{2}(l)=199584\left(\text { cleafh }_{2}(l)\right)^{2}$.
$\left(11-140\left(\text { cleafh }_{2}(l)\right)^{4}+200\left(\text { cleafh }_{2}(l)\right)^{8}\right) \sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}$

The twelfth derivative of the hyperbolic leaf function cleafh $_{2}(l)$ is as follows:
$\frac{d^{12}}{d l^{12}}$ cleafh $_{2}(l)=399168$ cleafh $_{2}(l)$.
$\left(-11+2\left(\text { cleafh }_{2}(l)\right)^{4}\left(221-780\left(\text { cleafh }_{2}(l)\right)^{4}+600\left(\text { cleafh }_{2}(l)\right)^{8}\right)\right)$

The thirteenth derivative of the hyperbolic leaf function: sleafh $_{2}(l)$ is as follows

$$
\begin{align*}
& \frac{d^{13}}{d^{13}} \text { cleafh }_{2}(l)=399168 \sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1} \\
& \cdot\left\{-11+130\left(\text { cleafh }_{2}(l)\right)^{4}\left(17-108\left(\text { cleafh }_{2}(l)\right)^{4}+120\left(\text { cleafh }_{2}(l)\right)^{8}\right)\right\} \tag{A13}
\end{align*}
$$

Using the derivatives from Eqs. (A1)-(A13), the Maclaurin series of the hyperbolic leaf function: cleafh $_{2}(l)$ is formulated as follows:
$\operatorname{cleafh}_{2}(l)=$ cleafh $_{2}(0)+\frac{1}{1!}\left(\frac{d}{d l}\right.$ cleafh $\left._{2}(0)\right) l+\frac{1}{2!}\left(\frac{d^{2}}{d l^{2}}\right.$ cleafh $\left._{2}(0)\right) l^{2}$
$+\frac{1}{3!}\left(\frac{d^{3}}{d l^{3}}\right.$ cleafh $\left._{2}(0)\right) l^{3}+\cdots+\frac{1}{9!}\left(\frac{d^{9}}{d l^{9}}\right.$ cleafh $\left._{2}(0)\right) l^{9}+\cdots$
$=1+\frac{2}{2!} l+\frac{12}{4!} l^{4}+\frac{216}{6!} l^{6}+\frac{7056}{8!} l^{8}+O\left(l^{10}\right)$
$=1+l^{2}+\frac{1}{2} l^{4}+\frac{3}{10} l^{6}+\frac{7}{40} l^{8}+O\left(l^{10}\right)$

Symbol O represents the Landau symbol. Using the above equation, the second derivative with respect to variable l is obtained as follows:
$\frac{d^{2}}{d l^{2}}$ cleafh $_{2}(l)=2+6 l^{2}+9 l^{4}+\frac{49}{5} l^{6}+O\left(l^{8}\right)$

Using Eq. (A14), the following equation is obtained:
$2 \cdot\left(\text { cleafh }_{2}(l)\right)^{3}=2 \cdot\left(1+l^{2}+\frac{1}{2} l^{4}+\frac{3}{10} l^{6}+\frac{7}{40} l^{8}+O\left(l^{10}\right)\right)^{3}$
$=2+6 l^{2}+9 l^{4}+\frac{49}{5} l^{6}+O\left(l^{18}\right)$

Eq. (A15) is equal to Eq. (A16). Therefore, the hyperbolic leaf function: cleafh $_{2}(l)$ satisfies Eq. (1). Subsequently, in the case of the basis $n=3$, the Maclaurin series is applied to the hyperbolic leaf function: cleafh $_{3}(l)$. The first derivative of the hyperbolic leaf function: cleafh $_{3}(l)$ is as follows:
$\frac{d}{d l} \operatorname{cleafh}_{3}(l)=\sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1}$

The second derivative of the hyperbolic leaf function
cleafh $_{3}(l)$ is as follows:
$\frac{d^{2}}{d l^{2}}$ cleafh $_{3}(l)=3 \cdot$ cleafh $_{3}^{5}(l)$

The third derivative of the hyperbolic leaf function $\operatorname{cleafh}_{3}(l)$ is as follows:
$\frac{d^{3}}{d l^{3}} \operatorname{cleafh}_{3}(l)=15 \cdot\left(\text { cleafh }_{3}(l)\right)^{4} \cdot \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1}$

The fourth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:
$\frac{d^{4}}{d l^{4}}$ cleafh $_{3}(l)=15 \cdot\left(\text { cleafh }_{3}(l)\right)^{3} \cdot\left(7\left(\text { cleafh }_{3}(l)\right)^{6}-4\right)$

The fifth derivative of the hyperbolic leaf function cleaf $_{3}(l)$ is as follows:
$\frac{d^{5}}{d l^{5}}$ cleafh $_{3}(l)$
$=45\left(\text { cleafh }_{3}(l)\right)^{2}\left(21\left(\text { cleafh }_{3}(l)\right)^{6}-4\right) \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1}$

The sixth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:
$\frac{d^{6}}{d l^{6}}$ cleafh $_{3}(l)$
$=45$ cleafh $_{3}(l)\left(8-188\left(\text { cleafh }_{3}(l)\right)^{6}+231\left(\text { cleafh }_{3}(l)\right)^{12}\right)$

The seventh derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:
$\frac{d^{7}}{d l^{7}}$ cleafh $_{3}(l)=45 \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1}$
$\cdot\left\{8+7\left(\text { cleafh }_{3}(l)\right)^{6}\left(-188+429\left(\text { cleafh }_{3}(l)\right)^{6}\right)\right\}$

The eighth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:
$\frac{d^{8}}{d l^{8}}$ cleafh $_{3}(l)=2025\left(\text { cleafh }_{3}(l)\right)^{5}$

The ninth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{9}}{d l^{9}} \text { cleafh }_{3}(l)=22275\left(\text { cleafh }_{3}(l)\right)^{4} \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1} \tag{A25}\\
& \cdot\left\{80+7\left(\text { cleafh }_{3}(l)\right)^{6}\left(-152+221\left(\text { cleafh }_{3}(l)\right)^{6}\right)\right\}
\end{align*}
$$

The tenth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:
$\frac{d^{10}}{d l^{10}}$ cleafh $_{3}(l)=22275\left(\text { cleafh }_{3}(l)\right)^{3}$
$\left(-320+7\left(\text { cleafh }_{3}(l)\right)^{6}\left(1600-5512\left(\text { cleafh }_{3}(l)\right)^{6}+4199\left(\text { cleafh }_{3}(l)\right)^{12}\right)\right)$

The eleventh derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{11}}{\text { dl }^{11}} \operatorname{cleafh}_{3}(l)=66825\left(\text { cleafh }_{3}(l)\right)^{2} \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1} \\
& \times\left(-320+7\left(\text { cleafh }_{3}(l)\right)^{6}\right)\left(4800-27560\left(\text { cleafh }_{3}(l)\right)^{6}+29393\left(\operatorname{cleafh}_{3}(l)\right)^{12}\right) \tag{A27}
\end{align*}
$$

The twelfth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{12}}{{d l^{12}}_{c^{2}}} \text { leafh }_{3}(l) \\
& =42768000 \text { cleafh }_{3}(l)-18069480000\left(\text { cleafh }_{3}(l)\right)^{7} \\
& +205184826000\left(\text { cleafh }_{3}(l)\right)^{13}-494148154500\left(\text { cleafh }_{3}(l)\right)^{19} \\
& +316234143225\left(\text { cleafh }_{3}(l)\right)^{25} \tag{A28}
\end{align*}
$$

The thirteenth derivative of the hyperbolic leaf function cleafh $_{3}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{13}}{d l^{13}} \text { cleafh }_{3}(l)=334125 \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1} \times \\
& \left\{128-378560\left(\text { cleafh }_{3}(l)\right)^{6}+7983248\left(\text { cleafh }_{3}(l)\right)^{12}\right. \tag{A29}\\
& \left.-28099708\left(\text { cleafh }_{3}(l)\right)^{18}+23661365\left(\text { cleafh }_{3}(l)\right)^{24}\right\}
\end{align*}
$$

Using the derivatives from Eqs. (A17)-(A29), the Maclaurin series of the hyperbolic leaf function cleafh $_{3}(l)$ is formulated as follows:
$\operatorname{cleafh}_{3}(l)=1+\frac{3}{2!} l^{2}+\frac{45}{4!} l^{4}+\frac{2295}{6!} l^{6}+\frac{228825}{8!} l^{8}+O\left(l^{10}\right)$
$=1+\frac{3}{2} l^{2}+\frac{15}{8} l^{4}+\frac{51}{16} l^{6}+\frac{5085}{896} l^{8}+O\left(l^{10}\right)$

Using the above equation, the second derivative with respect to variable l is obtained as follows:
$\frac{d^{2}}{d l^{2}}$ cleafh $_{3}(l)=3+\frac{45}{2} l^{2}+\frac{765}{8} l^{4}+\frac{5085}{16} l^{6}+O\left(l^{8}\right)$

Using Eq. (A30), the following equation is obtained:
$3 \cdot\left(\text { cleafh }_{3}(l)\right)^{5}=3 \cdot\left(1+\frac{3}{2} l^{2}+\frac{15}{8} l^{4}+\frac{51}{16} l^{6}+\frac{5085}{896} l^{8}+O\left(l^{10}\right)\right)^{5}$ $=3+\frac{45}{2} l^{2}+\frac{765}{8} l^{4}+\frac{5085}{16} l^{6}+O\left(l^{8}\right)$

Eq. (A31) is equal to Eq. (A32). Therefore, the hyperbolic leaf function cleafh $_{3}(l)$ satisfies Eq. (1).

Subsequently, in the case of the basis $n=4$, the Maclaurin series is applied to the hyperbolic leaf function cleafh $_{4}(l)$. The first derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d}{d l}$ cleafh $_{4}(l)=\sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1}$

The second derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d^{2}}{d l^{2}}$ cleafh $_{4}(l)=4 \cdot\left(\text { cleafh }_{4}(l)\right)^{7}$

The third derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d^{3}}{d l^{3}}$ cleafh $_{4}(l)=28 \cdot\left(\text { cleafh }_{4}(l)\right)^{6} \cdot \sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1}$

The fourth derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d^{4}}{d l^{4}}$ cleafh $_{4}(l)=56 \cdot\left(\text { cleafh }_{4}(l)\right)^{5} \cdot\left(5\left(\text { cleafh }_{4}(l)\right)^{8}-3\right)$

The fifth derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d^{5}}{d l^{5}}$ cleafh $_{4}(l)=280\left(\text { cleafh }_{4}(l)\right)^{4}\left(13\left(\text { cleafh }_{4}(l)\right)^{8}-3\right) \sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1}$

The sixth derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{6}}{d^{6}} \text { cleafh }_{4}(l)=1120\left(\text { cleafh }_{4}(l)\right)^{3} \tag{A38}\\
& \left(3-45\left(\text { cleafh }_{4}(l)\right)^{8}+52\left(\text { cleafh }_{4}(l)\right)^{16}\right)
\end{align*}
$$

The seventh derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{7}}{d l^{7}} \text { cleafh }_{4}(l)=1120\left(\text { cleafh }_{4}(l)\right)^{2} \sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1} \tag{A39}\\
& \cdot\left(9-495\left(\text { cleafh }_{4}(l)\right)^{8}+988\left(\text { cleafh }_{4}(l)\right)^{16}\right)
\end{align*}
$$

The eighth derivative of the hyperbolic leaf function cleafh $4(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{8}}{d^{8}} \text { cleafh }_{4}(l)=2240 \text { cleafh }_{4}(l) \\
& \cdot\left(-9+2502\left(\text { cleafh }_{4}(l)\right)^{8}-12357\left(\text { cleafh }_{4}(l)\right)^{16}+10868\left(\text { cleafh }_{4}(l)\right)^{24}\right) \tag{A40}
\end{align*}
$$

The ninth derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{9}}{d l^{9}} \text { cleafh }_{4}(l)=2240 \sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1} . \\
& \left(-9+22518\left(\text { cleafh }_{4}(l)\right)^{8}-210069\left(\text { cleafh }_{4}(l)\right)^{16}+271700\left(\text { cleafh }_{4}(l)\right)^{24}\right) \tag{A41}
\end{align*}
$$

The tenth derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d^{10}}{d l^{10}}$ cleafh $_{4}(l)=313600\left(\text { cleafh }_{4}(l)\right)^{7}$.
$\left(-1287+25938\left(\text { cleafh }_{4}(l)\right)^{8}-76587\left(\text { cleafh }_{4}(l)\right)^{16}+54340\left(\text { cleafh }_{4}(l)\right)^{24}\right)$

The eleventh derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:
$\frac{d^{11}}{d^{11}}{ }^{11}$ leaf $_{4}(l)=313600\left(\text { cleafh }_{4}(l)\right)^{6} \sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1}$
.$\left(-9009+389070\left(\text { cleafh }_{4}(l)\right)^{8}-1761501\left(\text { cleafh }_{4}(l)\right)^{16}+1684540\left(\text { cleafh }_{4}(l)\right)^{24}\right)$

The twelfth derivative of the hyperbolic leaf function: cleafh $_{4}(l)$ is as follows:
$\frac{d^{12}}{d l^{12}}$ cleafh $_{4}(l)=627200\left(\text { cleafh }_{4}(l)\right)^{s}$.
$\left(27027+17\left(\text { cleafh }_{4}(l)\right)^{8}\left(-162855+13\left(\text { cleaf }_{4}(l)\right)^{8}\left(103521-217953(\text { cleafh }(l))^{8}+129580\left(\text { cleaf }_{4}(l)\right)^{16}\right)\right)\right)$

The thirteenth derivative of the hyperbolic leaf function cleafh $_{4}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{13}}{d l^{13}} \operatorname{cleafh}_{4}(l)=8153600\left(\text { cleafh }_{4}(l)\right)^{4} \sqrt{\left(\text { cleafh }_{4}(l)\right)^{8}-1}\left(10395+17\left(\text { cleafh }_{4}(l)\right)^{8} .\right. \\
& \left.\left(-162855+2173941\left(\text { cleafh }_{4}(l)\right)^{8}-6320637\left(\text { cleafh }_{4}(l)\right)^{1 / 6}+4794460\left(\text { cleafh }_{4}(l)\right)^{24}\right)\right) \tag{A45}
\end{align*}
$$

Using the derivatives from Eqs. (A33)-(A45), the Maclaurin series of the hyperbolic leaf function cleafh $_{4}(l)$ is formulated as follows:
cleafh $_{4}(l)=1+2 l^{2}+\frac{14}{3} l^{4}+\frac{140}{9} l^{6}+\frac{502}{9} l^{8}+O\left(l^{10}\right)$

Using the above equation, the second derivative with respect to variable l is obtained as follows:

$$
\begin{equation*}
\frac{d^{2}}{d l^{2}} \operatorname{cleafh}_{4}(l)=4+56 l^{2}+\frac{1400}{3} l^{4}+\frac{28112}{9} l^{6}+O\left(l^{8}\right) \tag{A47}
\end{equation*}
$$

Using Eq. (A46), the following equation is obtained:
$4 \cdot\left(\text { cleafh }_{4}(l)\right)^{7}=4 \cdot\left(1+2 l^{2}+\frac{14}{3} l^{4}+\frac{140}{9} l^{6}+\frac{502}{9} l^{8}+O\left(l^{10}\right)\right)^{7}$ $=4+56 l^{2}+\frac{1400}{3} l^{4}+\frac{28112}{9} l^{6}+O\left(l^{8}\right)$

Eq. (A47) is equal to Eq. (A48). Therefore, the hyperbolic leaf function cleafh $_{4}(l)$ satisfies Eq. (1).
Subsequently, in the case of the basis $n=5$, the Maclaurin series is applied to the hyperbolic leaf function cleafh $_{5}(l)$. The first derivative of the hyperbolic leaf function $\operatorname{cleafh}_{5}(l)$ is as follows:
$\frac{d}{d l}$ cleaf $_{5}(l)=\sqrt{\left(\text { cleaf }_{5}(l)\right)^{10}-1}$

The second derivative of the hyperbolic leaf function cleafh $_{5}(l)$ is as follows:
$\frac{d^{2}}{d l^{2}}$ cleafh $_{5}(l)=5 \cdot\left(\operatorname{cleafh}_{5}(l)\right)^{9}$

The third derivative of the hyperbolic leaf function cleafh $_{5}(l)$ is as follows:
$\frac{d^{3}}{d l^{3}} \operatorname{cleafh}_{5}(l)=45 \cdot\left(\text { cleafh }_{5}(l)\right)^{8} \cdot \sqrt{\left(\text { cleafh }_{5}(l)\right)^{10}-1}$

The fourth derivative of the hyperbolic leaf function cleafh $_{5}(l)$ is as follows:

$$
\begin{equation*}
\frac{d^{4}}{d l^{4}} \operatorname{cleafh}_{5}(l)=45 \cdot\left(\text { cleafh }_{5}(l)\right)^{7} \cdot\left(-8+13\left(\text { cleafh }_{5}(l)\right)^{10}\right) \tag{A52}
\end{equation*}
$$

The fifth derivative of the hyperbolic leaf function cleafh $_{5}(l)$ is as follows:
$\frac{d^{5}}{d l^{5}} \operatorname{cleafh}_{5}(l)=45\left(\text { cleafh }_{5}(l)\right)^{6}$
$\left(-56+221\left(\text { cleafh }_{5}(l)\right)^{10}\right) \sqrt{\left(\text { cleafh }_{5}(l)\right)^{10}-1}$
$\cdot\left(112-1384\left(\text { cleafh }_{5}(l)\right)^{10}+1547\left(\text { cleafh }_{5}(l)\right)^{20}\right)$

The seventh derivative of the hyperbolic leaf function cleafh $_{5}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{7}}{d l^{7}} \text { cleafh }_{5}(l)=675\left(\text { cleafh }_{5}(l)\right)^{4} \sqrt{\left(\text { cleafh }_{5}(l)\right)^{10}-1} \tag{A55}\\
& \cdot\left(112-4152\left(\text { cleafh }_{5}(l)\right)^{10}+7735\left(\text { cleafh }_{5}(l)\right)^{20}\right)
\end{align*}
$$

The eighth derivative of the hyperbolic leaf function cleafh $_{(}(l)$ is as follows:

```
\(\frac{d^{8}}{d l^{8}}\) cleafh \(_{5}(l)=675\left(\text { cleafh }_{5}(l)\right)^{3}\)
\(\cdot\left(-448+59136\left(\text { cleafh }_{5}(l)\right)^{10}-264528\left(\text { cleafh }_{5}(l)\right)^{20}+224315\left(\text { cleafh }_{5}(l)\right)^{30}\right)\)
```

The ninth derivative of the hyperbolic leaf function $c_{\text {cleafh }}^{5}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{9}}{{d l^{9}}^{9} \text { leafh }_{5}(l)=2025\left(\text { cleafh }_{5}(l)\right)^{2} \sqrt{\left(\text { cleafh }_{5}(l)\right)^{10}-1}} \\
& \cdot\left(-448+256256\left(\text { cleafh }_{5}(l)\right)^{10}-2028048\left(\text { cleafh }_{5}(l)\right)^{20}+2467465\left(\text { cleafh }_{5}(l)\right)^{30}\right) \tag{A57}
\end{align*}
$$

The tenth derivative of the hyperbolic leaf function cleaf $_{5}(l)$ is as follows:
$\frac{d^{10}}{d l^{10}}$ cleafh $_{5}(l)=2025$ cleafh $_{5}(l) \cdot\left(896-3078208\left(\text { cleafh }_{5}(l)\right)^{10}\right.$ $\left.+48973408\left(\text { cleafh }_{5}(l)\right)^{20}-133716176\left(\text { cleafh }_{5}(l)\right)^{30}+91296205\left(\text { cleafh }_{5}(l)\right)^{40}\right)$

The eleventh derivative of the hyperbolic leaf function cleafh $_{5}(l)$ is as follows:

$$
\begin{align*}
& \frac{d^{11}}{d^{11}} \text { cleafh }_{5}(l)=2025 \sqrt{\left(\text { cleafh }_{5}(l)\right)^{10}-1} \cdot\left(896+11\left(\text { cleafh }_{5}(l)\right)^{10}\right. \\
& \left.\left(-3078208+93494688\left(\text { cleafh }_{5}(l)\right)^{10}-376836496\left(\text { cleafh }_{5}(l)\right)^{20}+340285855\left(\text { cleafh }_{5}(l)\right)^{30}\right)\right) \tag{A59}
\end{align*}
$$

Using the derivatives from Eqs. (A49)-(A59), the Maclaurin series of the hyperbolic leaf function cleafh $_{5}(l)$ is formulated as follows:
cleafh $_{5}(l)=1+\frac{5}{2} l^{2}+\frac{75}{8} l^{4}+\frac{825}{16} l^{6}+\frac{277125}{896} l^{8}+O\left(l^{10}\right)$

Using the above equation, the second derivative with respect to variable l is obtained as follows:

$$
\begin{equation*}
\frac{d^{2}}{d l^{2}} \text { cleafh }_{5}(l)=5+\frac{225}{2} l^{2}+\frac{12375}{8} l^{4}+\frac{277125}{16} l^{6}+O\left(l^{8}\right) \tag{A61}
\end{equation*}
$$

Using Eq. (A60), the following equation is obtained:
$5 \cdot\left(\text { cleafh }_{5}(l)\right)^{9}=5 \cdot\left(1+\frac{5}{2} l^{2}+\frac{75}{8} l^{4}+\frac{825}{16} l^{6}+\frac{277125}{896} l^{8}+O\left(l^{10}\right)\right)^{9}$ $=5+\frac{225}{2} l^{2}+\frac{12375}{8} l^{4}+\frac{277125}{16} l^{6}+O\left(l^{8}\right)$

Eq. (A61) is equal to Eq. (A62). Therefore, the hyperbolic leaf function cleafh $_{5}(l)$ satisfies Eq. (1).

Appendix B

In this section, the relation between the leaf function cleaf $_{2}(l)$ and the hyperbolic leaf function cleafh $_{2}(l)$ is described. The following polynomial is considered:

$$
\begin{equation*}
x y=1 \tag{B1}
\end{equation*}
$$

The following equation is obtained by differentiating the above equation with respect to variable x :
$\frac{d y}{d x}=-\frac{1}{x^{2}}$

Using Eqs. (B1) - (B2), the following equation is obtained:

$$
\begin{align*}
& \frac{1}{\sqrt{1-y^{4}}} \frac{d y}{d x}=\frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^{4}}}\left(-\frac{1}{x^{2}}\right) \tag{B3}\\
& =-\frac{x^{2}}{\sqrt{x^{4}-1}} \frac{1}{x^{2}}=-\frac{1}{\sqrt{x^{4}-1}}
\end{align*}
$$

The following equation is obtained from the above equation:

$$
\begin{equation*}
\frac{d y}{\sqrt{1-y^{4}}}+\frac{d x}{\sqrt{x^{4}-1}}=0 \tag{B4}
\end{equation*}
$$

Variables x and y are defined by the following equations:

$$
\begin{align*}
& x=\operatorname{cleaf}_{2}(l) \tag{B5}\\
& y=\operatorname{cleaf}_{2}(l) \tag{B6}
\end{align*}
$$

The domain of variable l is as follows:

$$
\begin{equation*}
4 m \eta_{2} \leq l \leq(4 m+2) \eta_{2} \tag{B7}
\end{equation*}
$$

The number m represent the integer. The following equation is obtained by differentiating the above equation with respect to variable l :
$\frac{d x}{d l}=\sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}=\sqrt{x^{4}-1}$
$\frac{d y}{d l}=\sqrt{1-\left(\operatorname{cleaf}_{2}(l)\right)^{4}}=-\sqrt{1-y^{4}}$
The following equation is obtained by substituting Eqs. (B8)-(B9) into Eq. (B4):
$\frac{d y}{\sqrt{1-y^{4}}}+\frac{d x}{\sqrt{x^{4}-1}}=\frac{1}{\sqrt{1-y^{4}}} \frac{d y}{d l} d l+\frac{1}{\sqrt{x^{4}-1}} \frac{d x}{d l} d l$
$=-\frac{1}{\sqrt{1-y^{4}}} \sqrt{1-y^{4}} d l+\frac{1}{\sqrt{x^{4}-1}} \sqrt{x^{4}-1} d l=0$

On the other hand, the domain of variable l is as follows:
$(4 m-2) \eta_{2} \leq l \leq 4 m \eta_{2}$

The following equation is obtained by differentiating the above equation with respect to variable l :
$\frac{d x}{d l}=\sqrt{\left(\text { cleafh }_{2}(l)\right)^{4}-1}=-\sqrt{x^{4}-1}$
$\frac{d y}{d l}=\sqrt{1-\left(\text { cleaf }_{2}(l)\right)^{4}}=\sqrt{1-y^{4}}$

The following equation is obtained by substituting Eqs. (B12)-(B13) into Eq. (B4):
$\frac{d y}{\sqrt{1-y^{4}}}+\frac{d x}{\sqrt{x^{4}-1}}=\frac{1}{\sqrt{1-y^{4}}} \frac{d y}{d l} d l+\frac{1}{\sqrt{x^{4}-1}} \frac{d x}{d l} d l$
$=\frac{1}{\sqrt{1-y^{4}}} \sqrt{1-y^{4}} d l-\frac{1}{\sqrt{x^{4}-1}} \sqrt{x^{4}-1} d l=0$

Eqs. (B5) and (B6) satisfy Eq. (B1). Therefore, the following relation is obtained:

$$
\begin{equation*}
\operatorname{cleaf}_{2}(l) \cdot \text { cleafh }_{2}(l)=1 \tag{B15}
\end{equation*}
$$

Appendix C

In this section, the relation between the hyperbolic leaf function sleafh $_{2}(l)$ and the hyperbolic leaf function cleafh $_{2}(l)$ is described. The following polynomial is considered:

$$
\begin{equation*}
-y x^{2}+y-x^{2}=1 \tag{C1}
\end{equation*}
$$

The following equation is obtained from the above equation:
$y=\frac{1+x^{2}}{1-x^{2}}$

The following equation is obtained by differentiating the above equation with respect to variable x :
$\frac{d y}{d x}=\frac{4 x}{\left(1-x^{2}\right)^{2}}$

Using Eqs. (C2)-(C3), the following equation is obtained:

$$
\begin{align*}
& \frac{1}{\sqrt{y^{4}-1}} \frac{d y}{d x}=\frac{1}{\sqrt{\left(\frac{1+x^{2}}{1-x^{2}}\right)^{4}-1}} \frac{4 x}{\left(1-x^{2}\right)^{2}} \tag{C4}\\
& =\frac{\left(1-x^{2}\right)^{2}}{2 \sqrt{2}|x| \sqrt{1+x^{4}}} \frac{4 x}{\left(1-x^{2}\right)^{2}}=\frac{\sqrt{2}}{\sqrt{1+x^{4}}} \frac{x}{|x|}
\end{align*}
$$

where the above equation is applied to $\sqrt{x^{2}}=|x|$. In the inequality $x \geqq 0$, the above equation is transformed as follows:

$$
\begin{equation*}
\frac{d y}{\sqrt{y^{4}-1}}-\sqrt{2} \frac{d x}{\sqrt{1+x^{4}}}=0 \tag{C5}
\end{equation*}
$$

The variables x and y are defined by the following equations:

$$
\begin{equation*}
x=\operatorname{sleafh}_{2}(l) \tag{C6}
\end{equation*}
$$

$$
\begin{equation*}
y=\text { cleafh }_{2}(\sqrt{2 l}) \tag{C7}
\end{equation*}
$$

In the condition $x=\operatorname{sleafh}_{2}(l) \geq 0$, the domain of variable l is as follows:
$4 m \eta_{2} \leq l \leq(4 m+2) \eta_{2}$

The number m represent the integer. The following equation is obtained by differentiating the above equation with respect to variable l :
$\frac{d x}{d l}=\sqrt{1+\left(\text { sleafh }_{2}(l)\right)^{4}}=\sqrt{1+x^{4}}$
$\frac{d y}{d l}=\sqrt{2} \sqrt{\left(\text { cleafh }_{2}(\sqrt{2} l)\right)^{4}-1}=\sqrt{2} \sqrt{y^{4}-1}$

The following equation is obtained by substituting Eqs. (C8)-(C9) into Eq. (C5):
$\frac{d y}{\sqrt{y^{4}-1}}-\sqrt{2} \frac{d x}{\sqrt{x^{4}+1}}=\frac{1}{\sqrt{y^{4}-1}} \frac{d y}{d l} d l-\sqrt{2} \frac{1}{\sqrt{x^{4}+1}} \frac{d x}{d l} d l$
$=\frac{1}{\sqrt{y^{4}-1}} \sqrt{2} \sqrt{y^{4}-1} d l-\frac{\sqrt{2}}{\sqrt{x^{4}+1}} \sqrt{x^{4}+1} d l=0$

In the inequality $x<0$, the above equation is transformed as follows:
$\frac{d y}{\sqrt{y^{4}-1}}+\sqrt{2} \frac{d x}{\sqrt{1+x^{4}}}=0$

In the condition $x=\operatorname{sleafh}_{2}(l)<0$, the domain of variable l is as follows:
$(4 m-2) \eta_{2} \leq l \leq 4 m \eta_{2}$

Using Eqs. (C6) and (C7), the following equation is obtained by differentiating the above equation with respect to variable l.
$\frac{d x}{d l}=\sqrt{1+\left(\text { sleafh }_{2}(l)\right)^{4}}=\sqrt{1+x^{4}}$
$\frac{d y}{d l}=\sqrt{2} \sqrt{\left(\operatorname{cleafh}_{2}(\sqrt{2} l)\right)^{4}-1}=-\sqrt{2} \sqrt{y^{4}-1}$

The following equation is obtained by substituting Eqs. (C14)-(C15) into Eq. (C12).
$\frac{d y}{\sqrt{y^{4}-1}}+\sqrt{2} \frac{d x}{\sqrt{x^{4}+1}}=\frac{1}{\sqrt{y^{4}-1}} \frac{d y}{d l} d l+\sqrt{2} \frac{1}{\sqrt{x^{4}+1}} \frac{d x}{d l} d l$
$=\frac{1}{\sqrt{y^{4}-1}}\left(-\sqrt{2} \sqrt{y^{4}-1}\right) d l+\frac{\sqrt{2}}{\sqrt{x^{4}+1}} \sqrt{x^{4}+1} d l=0$

Eqs. (C6) and (C7) satisfy Eq. (C1). Therefore, the following relation is obtained:
cleafh $_{2}(\sqrt{2} l)=\frac{1+\left(\text { sleafh }_{2}(l)\right)^{2}}{1-\left(\text { sleafh }_{2}(l)\right)^{2}}$

Appendix D

In this section, the relation between the hyperbolic leaf function: sleafh $_{3}(l)$ and the hyperbolic leaf function: $\operatorname{cleafh}_{3}(l)$ is described. The following polynomial is considered:

$$
\begin{equation*}
x^{2}-y^{2}-2 x^{2} y^{2}=1 \tag{D1}
\end{equation*}
$$

The above equation is solved for variable y.

$$
\begin{equation*}
y= \pm \frac{\sqrt{x^{2}-1}}{\sqrt{2 x^{2}+1}} \tag{D2}
\end{equation*}
$$

The following equation is obtained by differentiating the above equation with respect to variable x :

$$
\begin{equation*}
\frac{d y}{d x}= \pm \frac{3 x}{\sqrt{x^{2}-1}\left(1+2 x^{2}\right)^{\frac{3}{2}}} \tag{D3}
\end{equation*}
$$

Using Eqs. (D2)-(D3), the following equation is obtained:

$$
\begin{align*}
& \frac{1}{\sqrt{1+y^{6}}} \frac{d y}{d x}= \pm \frac{1}{\sqrt{1+\left(\frac{\sqrt{x^{2}-1}}{\sqrt{2 x^{2}+1}}\right)^{6}}} \frac{3 x}{\sqrt{x^{2}-1}\left(1+2 x^{2}\right)^{\frac{3}{2}}} \\
& = \pm \frac{\left(1+2 x^{2}\right)^{\frac{3}{2}}}{3 \sqrt{x^{2}+x^{4}+x^{6}}} \frac{3 x}{\sqrt{x^{2}-1}\left(1+2 x^{2}\right)^{\frac{3}{2}}} \\
& = \pm \frac{x}{\sqrt{x^{2}-1} \sqrt{x^{2}+x^{4}+x^{6}}}= \pm \frac{x}{|x| \sqrt{x^{6}-1}}= \pm \frac{1}{\sqrt{x^{6}-1}} \tag{D4}
\end{align*}
$$

The following equation is obtained from the above equation:
$\frac{d y}{\sqrt{1+y^{6}}} \pm \frac{d x}{\sqrt{x^{6}-1}}=0$

Variables x and y are defined by the following equations:
$x=$ cleaf $_{3}(l)$
$y=\operatorname{sleafh}_{3}(l)$

The following equation is obtained by differentiating the above equation with respect to variable l :
$\frac{d x}{d l}= \pm \sqrt{\left(\text { cleafh }_{3}(l)\right)^{6}-1}= \pm \sqrt{x^{6}-1}$
$\frac{d y}{d l}=\sqrt{1+\left(\text { sleafh }_{3}(l)\right)^{6}}=\sqrt{1+y^{6}}$

Using Eq. (D5), (D8) and (D9), the following relation is obtained:

$$
\begin{align*}
& \left(\text { cleafh }_{3}(l)\right)^{2}-\left(\text { sleafh }_{3}(l)\right)^{2}-2\left(\text { cleafh }_{3}(l)\right)^{2}\left(\text { sleafh }_{3}(l)\right)^{2}=1 \\
& \quad(4 m-1) \eta_{3}<l<(4 m+1) \eta_{3} \tag{D10}
\end{align*}
$$

Appendix E

To prove the addition theorem of Eq. (64), we define the following equation:

$$
\begin{equation*}
l_{1}+l_{2}=c \tag{E1}
\end{equation*}
$$

Symbol c represents the arbitrary constant. Using Eqs. (E1) and (64), the following equation is obtained:

$$
\begin{align*}
& \text { cleafh }_{2}(c)= \\
& \frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(c-l_{1}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}} \tag{E2}
\end{align*}
$$

The right side of the above equation is defined as follows:

$$
\begin{align*}
& F\left(l_{1}\right)= \\
& \frac{\text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(c-l_{1}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}} \tag{E3}
\end{align*}
$$

The symbol cleafh $h_{2}(c)$ is just a constant. The following equation is derived from Eq. (E2) and Eq. (E3):

$$
\begin{equation*}
F\left(l_{1}\right)=\operatorname{cleafh}_{2}(c) \tag{E4}
\end{equation*}
$$

Therefore, function $F\left(l_{l}\right)$ also has to be a constant.

$$
\begin{equation*}
\frac{\partial F\left(l_{1}\right)}{\partial l_{1}}=0 \tag{E5}
\end{equation*}
$$

If the above equation is satisfied, function $F\left(l_{l}\right)$ becomes a constant. To prove Eq. (E5), function $F\left(l_{l}\right)$ is differentiated with respect to variable l_{l}.
$\frac{\partial F\left(l_{1}\right)}{\partial l_{1}}=\frac{\left\{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(c-l_{1}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{4}-1}\right\}^{\prime}}{\left\{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}\right\}^{2}}$ $\times\left\{1+\left(\operatorname{cleafh}_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}\right\}$
$+\frac{\left\{\text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(c-l_{1}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{4}-1}\right\}}{\left\{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}\right\}^{2}}$
$\times\left\{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}\right\}^{\prime}$

On the other hand, the following equation is obtained:
$\left\{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(c-l_{1}\right)+\sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{4}-1}\right\}^{\prime}$
$=2$ cleafh $_{2}\left(l_{1}\right)\left\{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}-1\right\} \sqrt{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{4}-1}$
-2 cleafh $_{2}\left(c-l_{1}\right)\left\{\left(\text { cleafh }_{2}\left(c-l_{1}\right)\right)^{2}-1\right\} \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1}$

By substituting Eqs. (E7) and (E8) into Eq. (E6), Eq. (E5) is obtained. Function $F\left(l_{l}\right)$ does not depend on variable l_{l}. Therefore, the following equation is obtained:

$$
\begin{equation*}
F\left(l_{1}\right)=F(0) \tag{E9}
\end{equation*}
$$

By substituting $l_{l}=0$ into Eq. (E3), the following equation is obtained:

$$
\begin{align*}
& F(0)=\frac{2 \text { cleafh }_{2}(0) \text { cleafh }_{2}(c)+\sqrt{\left(\text { cleafh }_{2}(0)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}(c)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}(0)\right)^{2}+\left(\text { cleafh }_{2}(c)\right)^{2}-\left(\text { cleafh }_{2}(0)\right)^{2}\left(\text { cleafh }_{2}(c)\right)^{2}} \\
& =\frac{2 \text { cleafh }_{2}(c)+\sqrt{1-1} \sqrt{\left(\text { cleafh }_{2}(c)\right)^{4}-1}}{1+1+\left(\text { cleafh }_{2}(c)\right)^{2}-\left(\text { cleafh }_{2}(c)\right)^{2}}=\text { cleafh }_{2}(c) \tag{E10}
\end{align*}
$$

From Eqs. (E9) and (E10), Eq. (E4) is obtained. The proof is the same as Eqs. (67), (70), and (73).

Appendix F

Using imaginary number i, Eqs. (54)-(57) can be derived by using Eqs. (65)-(67) in Ref. [2]. As shown in Eq. (84), the hyperbolic leaf function is related to the leaf function through imaginary number i. By replacing variable l into variable $i \cdot l$, the following equation is obtained:

$$
\begin{equation*}
\operatorname{cleafh}_{n}(-l)=\operatorname{cleaf}_{n}(i \cdot l) \tag{F1}
\end{equation*}
$$

The hyperbolic leaf function cleafh $h_{n}(l)$ is the even function. The following equation is obtained:

$$
\begin{equation*}
\operatorname{cleafh}_{n}(l)=\operatorname{cleaf}_{n}(i \cdot l) \tag{F2}
\end{equation*}
$$

In a similar manner, as described in the above procedure, the following equation is obtained by using Eqs. (30)-(32) in Ref. [3]:

$$
\begin{align*}
& \text { sleaf }_{2 m-1}(-l)=i \cdot \text { sleafh }_{2 m-1}(i \cdot l) \quad(m=1,2,3,, \cdots) \tag{F3}\\
& \text { sleaf }_{2 m}(-l)=i \cdot \text { sleaf }_{2 m}(i \cdot l) \quad(m=1,2,3, \cdots) \tag{F4}\\
& \text { sleafh }_{2 m}(-l)=i \cdot \text { sleafh }_{2 m}(i \cdot l) \quad(m=1,2,3, \cdots) \tag{F5}
\end{align*}
$$

The hyperbolic leaf function $\operatorname{sleafh}_{n}(l)$ is the odd function. The following equation is obtained:

$$
\begin{equation*}
i \cdot \text { sleaf }_{2 m-1}(l)=\text { sleafh }_{2 m-1}(i \cdot l) \quad(m=1,2,3,, \cdots) \tag{F6}
\end{equation*}
$$

$$
\begin{align*}
& i \cdot \text { sleaf }_{2 m}(l)=\operatorname{sleaf}_{2 m}(i \cdot l) \quad(m=1,2,3, \cdots) \tag{F7}\\
& i \cdot \text { sleafh }_{2 m}(l)=\text { sleafh }_{2 m}(i \cdot l) \quad(m=1,2,3, \cdots) \tag{F8}
\end{align*}
$$

In the case of the basis $n=1$, the following equation between the leaf function and the hyperbolic leaf function is obtained:

$$
\begin{equation*}
\left(\text { sleaf }_{1}(i \cdot l)\right)^{2}+\left(\text { cleaf }_{1}(i \cdot l)\right)^{2}=1 \tag{F9}
\end{equation*}
$$

By substituting Eqs. (F6) and (F2) into Eq. (F9), the following equation is obtained:

$$
\begin{equation*}
\left(i \cdot \operatorname{sleafh}_{1}(l)\right)^{2}+\left(\text { cleafh }_{1}(l)\right)^{2}=1 \tag{F10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\operatorname{cleafh}_{1}(l)\right)^{2}-\left(\operatorname{sleafh}_{1}(l)\right)^{2}=1 \tag{F11}
\end{equation*}
$$

The above equation has the same relation between the hyperbolic function $\sinh (l)$ and the hyperbolic function $\cosh (l)$. In the case of the basis $n=2$, the leaf function: $\operatorname{sleaf}_{2}(l)$ is related to the leaf function: $\operatorname{cleaf}_{2}(l)$.
$\left(\operatorname{sleaf}_{2}(l)\right)^{2}+\left(\operatorname{cleaf}_{2}(l)\right)^{2}+\left(\operatorname{sleaf}_{2}(l)\right)^{2} \cdot\left(\operatorname{cleaf}_{2}(l)\right)^{2}=1$

By replacing variable l into variable $i \cdot l$, the following equation is obtained:
$\left(\operatorname{sleaf}_{2}(i \cdot l)\right)^{2}+\left(\operatorname{cleaf}_{2}(i \cdot l)\right)^{2}+\left(\operatorname{sleaf}_{2}(i \cdot l)\right)^{2} \cdot\left(\operatorname{cleaf}_{2}(i \cdot l)\right)^{2}=1$

By substituting Eqs. (F7) and (F2) into the above equation, the following equation is obtained:

$$
\begin{equation*}
\left(i \cdot \operatorname{sleaf}_{2}(l)\right)^{2}+\left(\operatorname{cleafh}_{2}(l)\right)^{2}+\left(i \cdot \operatorname{sleaf}_{2}(l)\right)^{2} \cdot\left(\text { cleafh }_{2}(l)\right)^{2}=1 \tag{F14}
\end{equation*}
$$

$$
\begin{equation*}
-\left(\operatorname{sleaf}_{2}(l)\right)^{2}+\left(\operatorname{cleafh}_{2}(l)\right)^{2}-\left(\operatorname{sleaf}_{2}(l)\right)^{2} \cdot\left(\operatorname{cleafh}_{2}(l)\right)^{2}=1 \tag{F15}
\end{equation*}
$$

By substituting variable l into variable $\sqrt{2} l$, the following equation is obtained:
$-\left(\operatorname{sleaf}_{2}(\sqrt{2} \cdot l)\right)^{2}+\left(\operatorname{cleafh}_{2}(\sqrt{2} \cdot l)\right)^{2}-\left(\operatorname{sleaf}_{2}(\sqrt{2} \cdot l)\right)^{2} \cdot\left(\operatorname{cleafh}_{2}(\sqrt{2} \cdot l)\right)^{2}=1($ F16 $)$

By substituting Eq. (33) in $\operatorname{Ref}[3]$, the following equation is obtained:
$-\frac{2\left(\text { sleafh }_{2}(l)\right)^{2}}{1+\left(\text { sleafh }_{2}(l)\right)^{4}}+\left(\operatorname{cleafh}_{2}(\sqrt{2} \cdot l)\right)^{2}-\frac{2\left(\text { sleafh }_{2}(l)\right)^{2}}{1+\left(\text { sleafh }_{2}(l)\right)^{4}} \cdot\left(\text { cleaf }_{2}(\sqrt{2} \cdot l)\right)^{2}=1$

The above equation is simplified as follows:
$\left\{1-\left(\text { sleafh }_{2}(l)\right)^{2}\right\}^{2}\left(\text { cleafh }_{2}(\sqrt{2} \cdot l)\right)^{2}-\left\{1+\left(\text { sleafh }_{2}(l)\right)^{2}\right\}^{2}=0$

Eq. (56) is obtained from the above equation.
In the case of the basis $n=3$, the leaf function $\operatorname{sleaf}_{3}(l)$ is related to the leaf function $\operatorname{cleaf}_{3}(l)$.
$\left(\operatorname{sleaf}_{3}(l)\right)^{2}+\left(\operatorname{cleaf}_{3}(l)\right)^{2}+2 \cdot\left(\text { sleaf }_{3}(l)\right)^{2} \cdot\left(\text { cleaf }_{3}(l)\right)^{2}=1$

By replacing variable l into variable $i \cdot l$, the following equation is obtained:
$\left(\operatorname{sleaf}_{3}(i \cdot l)\right)^{2}+\left(\operatorname{cleaf}_{3}(i \cdot l)\right)^{2}+2 \cdot\left(\operatorname{sleaf}_{3}(i \cdot l)\right)^{2} \cdot\left(\text { cleaf }_{3}(i \cdot l)\right)^{2}=1$

By substituting Eq. (F2) and (F6) into Eq. (F20), the following equation is obtained:
$\left(i \cdot \text { sleafh }_{3}(l)\right)^{2}+\left(\text { cleafh }_{3}(l)\right)^{2}+2 \cdot\left(i \cdot \text { sleafh }_{3}(l)\right)^{2} \cdot\left(\text { cleafh }_{3}(l)\right)^{2}=1(\mathrm{~F} 21)$
$\left(\text { cleafh }_{3}(l)\right)^{2}-\left(\text { sleafh }_{3}(l)\right)^{2}-2 \cdot\left(\text { sleafh }_{3}(l)\right)^{2} \cdot\left(\text { cleafh }_{3}(l)\right)^{2}=1(\mathrm{~F} 22)$

The Eq. (57) is obtained.

Appendix G

In the case of the basis $n=2$, the addition theorem of the leaf function $\operatorname{sleaf}_{2}(l)$ is obtained as follows:
sleaf $_{2}\left(l_{1} \pm l_{2}\right)=$
$\frac{\text { sleaf }_{2}\left(l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{4}} \pm \text { sleaf }_{2}\left(l_{2}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(l_{1}\right)\right)^{4}}}{1+\left(\text { sleaf }_{2}\left(l_{1}\right)\right)^{2}\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{2}}$

By replacing variable l into variable $i \cdot l$, the following equation is obtained:
sleaf $_{2}\left(i \cdot l_{1} \pm i \cdot l_{2}\right)=$
$\frac{\text { sleaf }_{2}\left(i \cdot l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(i \cdot l_{2}\right)\right)^{4}} \pm \text { sleaf }_{2}\left(i \cdot l_{2}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(i \cdot l_{1}\right)\right)^{4}}}{1+\left(\text { sleaf }_{2}\left(i \cdot l_{1}\right)\right)^{2}\left(\text { sleaf }_{2}\left(i \cdot l_{2}\right)\right)^{2}}$

By substituting Eqs. (F7) into the above equation, the following equation is obtained:
$i \cdot \operatorname{sleaf}_{2}\left(l_{1} \pm l_{2}\right)=$
$\frac{i \cdot \text { sleaf }_{2}\left(l_{1}\right) \sqrt{1-\left(i \cdot \text { sleaf }_{2}\left(l_{2}\right)\right)^{4}} \pm i \cdot \text { sleaf }_{2}\left(l_{2}\right) \sqrt{1-\left(i \cdot \text { sleaf }_{2}\left(l_{1}\right)\right)^{4}}}{1+\left(i \cdot \text { sleaf }_{2}\left(l_{1}\right)\right)^{2}\left(i \cdot \text { sleaf }_{2}\left(l_{2}\right)\right)^{2}}$

The above equation is simplified as equation (G1).
In the case of the basis $n=2$, the addition theorem of the leaf function cleaf $_{2}(l)$ is obtained as follows:

$$
\begin{align*}
& \text { cleaf }_{2}\left(l_{1}+l_{2}\right)= \\
& \frac{\text { cleaf }_{2}\left(l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{4}}-\text { sleaf }_{2}\left(l_{2}\right) \sqrt{1-\left(\text { cleaf }_{2}\left(l_{1}\right)\right)^{4}}}{1+\left(\text { cleaf }_{2}\left(l_{1}\right)\right)^{2}\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{2}} \tag{G4}
\end{align*}
$$

By replacing variable l into variable $i \cdot l$, the following equation is obtained:
cleaf $_{2}\left(i \cdot l_{1}+i \cdot l_{2}\right)=$
$\frac{\text { cleaf }_{2}\left(i \cdot l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(i \cdot l_{2}\right)\right)^{4}}-\text { sleaf }_{2}\left(i \cdot l_{2}\right) \sqrt{1-\left(\text { cleaf }_{2}\left(i \cdot l_{1}\right)\right)^{4}}}{1+\left(\text { cleaf }_{2}\left(i \cdot l_{1}\right)\right)^{2}\left(\text { sleaf }_{2}\left(i \cdot l_{2}\right)\right)^{2}}$

By substituting Eq. (F2) and Eq. (F7) into the above equation, the following equation is obtained:
cleafh $_{2}\left(l_{1}+l_{2}\right)$
$=\frac{\text { cleafh }_{2}\left(l_{1}\right) \sqrt{1-\left(i \cdot \text { sleaf }_{2}\left(l_{2}\right)\right)^{4}}-i \cdot \text { sleaf }_{2}\left(l_{2}\right) \sqrt{1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(i \cdot \text { sleaf }_{2}\left(l_{2}\right)\right)^{2}}$
$=\frac{\operatorname{cleafh}_{2}\left(l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{4}}-i \cdot \text { sleaf }_{2}\left(l_{2}\right) \sqrt{1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}}}{1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\operatorname{sleaf}_{2}\left(l_{2}\right)\right)^{2}}$

The range of the hyperbolic leaf function is as follows:
cleafh $_{2}(l) \geq 1$

The root of the second term becomes negative. Therefore, Eq. (G6) is defined as follows:
cleafh $h_{2}\left(l_{1}+l_{2}\right)$
$=\frac{\text { cleafh }_{2}\left(l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{4}}-i \cdot \text { sleaf }_{2}\left(l_{2}\right) \cdot i \cdot \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1}}{1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{2}}$
$=\frac{\text { cleafh }_{2}\left(l_{1}\right) \sqrt{1-\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{4}}+\text { sleaf }_{2}\left(l_{2}\right) \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1}}{1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { sleaf }_{2}\left(l_{2}\right)\right)^{2}}$

The following equation is obtained from Eq. (F15):
sleaf $_{2}(l)= \pm \sqrt{\frac{\left(\text { cleafh }_{2}(l)\right)^{2}-1}{\left(\text { cleafh }_{2}(l)\right)^{2}+1}}$

By substituting the above equation into Eq. (G8), the following equation is obtained:
$\operatorname{cleafh}_{2}\left(l_{1}+l_{2}\right)$
$=\frac{\operatorname{cleafh}_{2}\left(l_{1}\right) \sqrt{1-\left(\frac{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1}{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}+1}\right)^{2}} \pm \sqrt{\frac{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1}{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}+1}} \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1}}{1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\frac{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1}{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}+1}\right)}$

By multiplying the numerator and the denominator by $\left(\text { cleafh } h_{2}\left(l_{2}\right)\right)^{2}+1$, the above equation is simplified as follows:
cleafh $_{2}\left(l_{1}+l_{2}\right)$
$=\frac{\left.\left.\text { cleafh }_{2}\left(l_{1}\right) \sqrt{(\text { (cleafh }}\left(l_{2}\right)\right)^{2}+1\right)^{2}-\left(\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1\right)^{2}}{\left(l_{1} \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}\right.} \underset{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}+1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1\right)}{ }$
$=\frac{\text { cleafh }_{2}\left(l_{1}\right) \sqrt{\left(\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}+1\right)^{2}-\left(\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1\right)^{2}} \pm \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{\left(\text { cleafh }^{4}\left(l_{1}\right)\right)^{2}+1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}-1\right)}$
$=\frac{\text { cleafh }_{2}\left(l_{1}\right) \sqrt{4\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}} \pm \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}+1-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-1\right)}$
$=\frac{2 \text { cleafh }_{2}\left(l_{1}\right) \text { cleafh }_{2}\left(l_{2}\right) \pm \sqrt{\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{4}-1} \sqrt{\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{4}-1}}{1+\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}+\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}-\left(\text { cleafh }_{2}\left(l_{1}\right)\right)^{2}\left(\text { cleafh }_{2}\left(l_{2}\right)\right)^{2}}$
2cleafh $h_{2}\left(l_{1}\right)$ cleafh $2\left(l_{2}\right)+$ cleafh $_{2}^{\prime}\left(l_{1}\right)$ cleafh $h_{2}^{\prime}\left(l_{2}\right)$

In the above equation, the superscript prime ' of the hyperbolic leaf function represents the derivative with respect to variable l.

Appendix H

In this section, the relation between the hyperbolic function $\cosh (l) \quad\left(=\right.$ cleafh $\left._{l}(l)\right)$ and the hyperbolic leaf function cleafh $_{n}(l)$ is described. The following equation is considered:

$$
\begin{equation*}
\left(\text { cleafh }_{n}(l)\right)^{n}=\cosh (n \theta) \quad n=1,2,3, \cdots \tag{H1}
\end{equation*}
$$

Using the above equation, the following equation is obtained:

$$
\begin{align*}
& \theta=\frac{1}{n} \operatorname{ar} \cosh \left(\left(\text { cleafh }_{n}(l)\right)^{n}\right) \\
& =\frac{1}{n} \ln \left(\left(\text { cleaf }_{n}(l)\right)^{n}+\sqrt{\left(\text { cleafh }_{n}(l)\right)^{2 n}-1}\right) \tag{H2}\\
& \quad n=1,2,3, \cdots
\end{align*}
$$

The above equation is differentiated with respect to variable l.

$$
\begin{equation*}
\frac{d \theta}{d l}=\frac{n\left(\text { cleafh }_{n}(l)\right)^{n-1}}{n \sqrt{\left(\text { cleafh }_{n}(l)\right)^{2 n}-1}} \sqrt{\left(\text { cleafh }_{n}(l)\right)^{2 n}-1} \tag{H3}
\end{equation*}
$$

$=\left(\text { cleafh }_{n}(l)\right)^{n-1}$
The following equation is obtained by integrating the above equation from 0 to l :
$\theta=\int_{0}^{l}\left(\text { cleafh }_{n}(t)\right)^{n-1} d t$

Using Eqs. (H1) and (H4), the following equation is obtained:

$$
\begin{equation*}
\left(\text { cleafh }_{n}(l)\right)^{n}=\cosh \left(n \int_{0}^{l}\left(\text { cleafh }_{n}(t)\right)^{n-1} d t\right) \tag{H5}
\end{equation*}
$$

$$
n=1,2,3, \cdots
$$

Note that the above equation is satisfied with the inequality: cleafh $_{n}(l) \geqq 1$, if the basis n is odd number.

Appendix I

The integration of the hyperbolic leaf function: $\left(\text { cleafh }_{n}(l)\right)^{n-l}$ is obtained as follows:

$$
\begin{align*}
& \frac{n}{2} \int_{0}^{l}\left(\text { cleafh }_{n}(t)\right)^{n-1} d t \\
& =\ln \left(\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}+\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}\right)-\ln \sqrt{2} \\
& 0 \leq l<\eta_{n} \\
& \quad n=2,3, \cdots \tag{I1}
\end{align*}
$$

The proof is as follows :

$$
\begin{align*}
& \frac{d}{d l}\left(\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}\right)=\frac{d}{d l}\left(\left(\text { cleafh }_{n}(l)\right)^{n}+1\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left(\left(\text { cleafh }_{n}(l)\right)^{n}+1\right)^{\frac{1}{2}-1} \cdot n^{\left(\text {cleafh }_{n}(l)\right)^{n-1} \cdot \sqrt{\left(\text { cleafh }_{n}(l)\right)^{2 n}-1}} \\
& =\frac{n}{2} \frac{\left(\text { cleafh }_{n}(l)\right)^{n-1} \sqrt{\left(\left(\text { cleafh }_{n}(l)\right)^{n}+1\right)\left(\left(\text { cleafh }_{n}(l)\right)^{n}-1\right)}}{\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}} \\
& =\frac{n}{2}\left(\text { cleafh }_{n}(l)\right)^{n-1} \sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1} \tag{I2}
\end{align*}
$$

$\frac{d}{d l}\left(\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}\right)=\frac{d}{d l}\left(\left(\text { cleafh }_{n}(l)\right)^{n}-1\right)^{\frac{1}{2}}$
$=\frac{1}{2}\left(\left(\text { cleafh }_{n}(l)\right)^{n}-1\right)^{\frac{1}{2}-1} \cdot n\left(\text { cleafh }_{n}(l)\right)^{n-1} \cdot \sqrt{\left(\text { cleafh }_{n}(l)\right)^{2 n}-1}$
$=\frac{n}{2} \frac{\left(\text { cleafh }_{n}(l)\right)^{n-1} \sqrt{\left(\left(\text { cleafh }_{n}(l)\right)^{n}+1\right)\left(\left(\text { cleafh }_{n}(l)\right)^{n}-1\right)}}{\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}}$
$=\frac{n}{2}\left(\text { cleafh }_{n}(l)\right)^{n-1} \sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}$

Using Eq. (I2) and Eq. (I3), the following equation is obtained:

$$
\begin{align*}
& \frac{d}{d l} \ln \left(\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}+\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}\right) \\
& =\frac{\frac{n}{2}\left(\text { cleafh }_{n}(l)\right)^{n-1} \sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}+\frac{n}{2}\left(\text { cleafh }_{n}(l)\right)^{n-1} \sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}}{\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}+\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}} \\
& =\frac{n}{2}\left(\text { cleafh }_{n}(l)\right)^{n-1} \frac{\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}+\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}}{\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}+1}+\sqrt{\left(\text { cleafh }_{n}(l)\right)^{n}-1}} \\
& \left.=\frac{n}{2} \operatorname{cleafh}_{n}(l)\right)^{n-1} \tag{I4}
\end{align*}
$$

In the case $n=1$ of Eq. (I1), the following equation is obtained:

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{l}\left(\text { cleafh }_{1}(t)\right)^{0} d t \tag{I5}\\
& =\ln \left(\sqrt{\left(\text { cleafh }_{1}(l)\right)^{1}+1}+\sqrt{\left(\text { cleafh }_{1}(l)\right)^{1}-1}\right)-\ln \sqrt{2} \\
& \frac{1}{2} \int_{0}^{l} d t=\ln \left(\sqrt{\text { cleafh }_{1}(l)+1}+\sqrt{\text { cleafh }_{1}(l)-1}\right)-\ln \sqrt{2} \tag{I6}\\
& \frac{1}{2} l+\ln \sqrt{2}=\ln \left(\sqrt{\text { cleafh }_{1}(l)+1}+\sqrt{\text { cleafh }_{1}(l)-1}\right) \tag{I7}
\end{align*}
$$

$e^{\frac{1}{2} l+\ln \sqrt{2}}=\sqrt{\text { cleafh }_{1}(l)+1}+\sqrt{\text { cleafh }_{1}(l)-1}$

Therefore, the following equation is obtained:

$$
\begin{equation*}
\sqrt{2} e^{\frac{1}{2} l}=\sqrt{\text { cleafh }_{1}(l)+1}+\sqrt{\text { cleafh }_{1}(l)-1} \tag{I10}
\end{equation*}
$$

Using Eq. (16), the above equation represents the following equation:

$$
\begin{equation*}
e^{l}=\cosh (l)+\sinh (l) \tag{I11}
\end{equation*}
$$

Appendix J

The numerical data of the hyperbolic leaf function is summarized in the table 4.

Table 4 Numerical data of hyperbolic leaf function cleafh $_{n}(l)$
(All results have been rounded to no more than five significant figures)

l	$r\left(=c l e a f h ~_{\text {l }}(\mathrm{l})\right.$)				
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
0.0	1.0000	1.0000	1.0000	1.0000	1.0000
0.2	1.0200	1.0408	1.0632	1.0886	1.1193
0.4	1.0810	1.1741	1.3063	1.5978	-1.6710
0.6	1.1854	1.4425	2.2251	-1.4175	-1.0496
0.8	1.3374	1.9702	-2.2494	-1.0574	-1.0104
1.0	1.5430	3.2181	-1.3107	-1.0026	-1.2510
1.2	1.8106	9.0068	-1.0646	-1.1293	1.2736
1.4	2.1508	-11.240	-1.0000	-1.9365	1.0130
1.6	2.5774	-3.4629	-1.0617	1.3008	1.0020
1.8	3.1074	-2.0568	-1.3020	1.0340	1.5862
2.0	3.7621	-1.4842	-2.2016	1.0105	-1.1305
2.2	4.5679	-1.1959	2.2746	1.1822	-1.0001
2.4	5.5569	-1.0505	1.3151	3.2310	-1.1089
2.6	6.7690	-1.0004	1.0661	-1.2181	1.7851
2.8	8.2527	-1.0321	1.0000	-1.0172	1.0557
3.0	10.067	-1.1540	1.0603	-1.0240	1.0081
3.2	12.286	-1.4036	1.2977	-1.2523	1.2303
3.4	14.998	-1.8910	2.1787	2.3356	-1.2987
3.6	18.312	-3.0059	-2.3007	1.1565	-1.0160
3.8	22.361	-7.5141	-1.3196	1.0062	-1.0387
4.0	27.308	14.944	-1.0676	1.0043	-1.5195
4.2	33.350	3.7485	-1.0000	1.3482	1.1425
4.4	40.731	2.1519	-1.0589	-1.7507	1.0005
4.6	49.747	1.5292	-1.2935	-1.1095	1.0992
4.8	60.759	1.2192	-2.1566	-1.0007	-1.9533
5.0	74.209	1.0614	2.3276	-1.0705	-1.0623
5.2	90.638	1.0019	1.3241	-1.4881	-1.0061
5.4	110.70	1.0246	1.0692	1.5051	-1.2115

Note: The value of the hyperbolic leaf function with respect to the inequality $l<0$ can be calculated by using the characteristic of the even function (Eq. (19)).

[^0]: *Department of Integrated Mechanical Engineering, Daido University
 Address: 10-3 Takiharu-cho, Minami-ku, Nagoya, JAPAN
 E-mail: shinohara@06.alumni.u-tokyo.ac.jp

