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Special Function: Hyperbolic Leaf Function r = cleafh.(l)
(Second Report)

Kazunori Shinohara*

Summary
In previous reports, the leaf function sleafh,(l) is defined. This function is satisfied by the ordinary differential

equation (ODE) and the following initial conditions:

d*r(1)
dr*
r(0)=0

dr (0) 1
dl

=n- r(l)z"_l n=123,---

Variable r(]) consisting of parameter / represents the hyperbolic leaf functions. Parameter » represents the basis
(the natural number). In the case of the basis n = [, the hyperbolic leaf function sleafh,(l) represents the
hyperbolic function sinh(l). With respect to an arbitrary basis n, the hyperbolic leaf function sleafh,(l) is closely
related to the leaf function sleaf,(l).

In this paper, the hyperbolic leaf function cleafh,(l) is defined. This function is satisfied by the

abovementioned ordinary differential equation and the following initial conditions:

2
ddlgz(l) =n: r(l)sz1 n= 17273a' o
r(0)=1
ar(0) _,

ar

Compared to the hyperbolic leaf function sleafh,(l), only the initial condition of the hyperbolic leaf function
cleafhy(l) is different. In the case of the basis n = I, the function represents the hyperbolic function cosh(l). This
function is closely related to other functions cleaf,(1), sleaf(I), and sleafhn(l).
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1. Introduction

In this paper, the hyperbolic leaf function cleafh.(l) is
presented. This function is satisfied by the ordinary
differential equation (ODE) and the following initial

conditions:

2
d£9=nm@“ln=u&m (1)
r(O):l (or r=1, l=0) (2)
ar(0) _ (3)

dl

Compared to the hyperbolic leaf function sleafh,(l), only the
initial condition of the hyperbolic leaf function cleafh.(l) is
different. In the case of the basis n» = I, the function

represents the hyperbolic function cosh(l).
2. Definition of Hyperbolic Leaf Function cleafhu(l)

In this section, we discuss about Eq. (1). The basis n
represents the natural number /, 2, 3,--- By multiplying
dr/dl to both sides of Eq. (1), the following equation is

obtained:

drd’r a2 dr

7 2 n= 1:2:3, e (4)
dl dl dl

By integrating both sides of the above equation, the

following equation is obtained:

2
lmj Nl TR R )
2\dl) 2

C represents the constant of integration. C is determined by

the initial conditions (Egs. (2)—(3)). Therefore, the equation
is as follows:

c-_L1 (6)

Using the above results and Eq. (5), the following equation
is obtained:

%:im (r>1) %

where the variable r is satisfied by the inequality » = 1. In

the inequality / = 0, the following equation is applied:
%:\/r“—l (er) (8)

In the inequality / < 0, the following equation is applied:

dL:_ PEC

9
° (r=1) ©)

In the inequality / = 0, Eq. (8) is integrated from / to r after

the variables are separated.

fﬂ:f%JAw (r=1) (10)

ma4m:fﬁ;4m (r>1) (11)

()= 10)+ [ ———dr (r21) (12)
NPT

—

The symbol /(1)(=/(r)) becomes 0 by the initial condition of
Eq. (2).

r>1) (13)

Wﬁf%JAW(

To define the inverse function that satisfies the above

equation, the following equation is formulated:

Ldt =] (14)

2" —1

acleafh,(r)= JT

In this paper, the prefix “a” of the hyperbolic leaf function
cleafh,(l) represents the inverse function. Using the above
equation, the following equation is obtained:

r=cleafh, (1) (15)

In the case of the basis n = I, the following equation is

obtained:

cleafh, (1) = cosh (/) (16)



In the inequality / < 0, based on the Eq. (7), the following

equation is defined:

I=—[ ———dt r=1 (a7
1 t2n_1

Using the above equation, the following equation is

obtained:
r = cleafh, (1) (18)

3. Graph of Hyperbolic Leaf Function: cleafhu(l)

The hyperbolic leaf function is shown in Fig. 1.
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Fig. 1 Curve of the hyperbolic leaf function cleafh,(I)

Variable » and variable / represent the vertical axis and the
horizontal axis, respectively. The hyperbolic leaf function
cleafhy(l) is an even function. Therefore, it is obtained as

follows:

cleafh, (— l) = cleafh, (l) (n = 1,2,3,~--) (19)

In the basis n = I, the hyperbolic leaf function cleafh;(l)
represents the hyperbolic function cosh(l). With respect to
arbitrary basis n, the gradient of the function cleafh,(l)
becomes 0.0 at [ = 0.0. It is based on the initial conditions
(Egs. (2) and (3)). As the basis n increases, the gradients of
the curves become sharp. The hyperbolic leaf function
cleafhy(l) has the limit #, except for the basis n = 1. We

define the limit as follows:

limcleafh, ()= (n=2,3,-) (20)

=,

The limit of the arbitrary basis 7 is obtained as follows:

m, =Iw%dt(=l) (n=23,-) 1)
L -

—

The values of the limit #, are summarized in Table 1.

Table 1 Limit #, of variable / with respect to the hyperbolic
leaf function cleafh,(l) (All results have been rounded to no

more than six significant figures)

Limit 7, Value
ni N/A
n2 1.31102
n3 0.70109
n4 0.48197
ns 0.36790
100 0.01581

In the basis n = 2, the hyperbolic leaf function cleafh,(l)
become 0 if the following equation is satisfied:

=" (22)

where the constant z,is described in Ref. [2]. The following

equation is obtained by substituting Eq. (22) in Eq. (15):
Cleaﬂh(?j = (23)

Based on the above equation, we can predict the limit by

following equation:

S P 1 _ 1 (24)
[ 7, > [ L\/t4_1dt 0\/1_t4dt]

In the basis n = 3, we can predict the limit by the following

equation:

[=¢5=2n, (25)



(26)

:j“’#dz
0 J1+¢°

27)

.1
2773 = 2J‘1 ﬁdl

Based on the results of the numerical integration, we can
find the above relation. The results of the limit are as
follows:

gy =2n,=
1.4021821053254542611750190790502941354630222054239
(28)

Using Egs. (26) and (27), the limits {3 and 2Xz; are
calculated by fifty digit numbers, respectively. The limit (3
matches the limit 2 xy; by fifty digit numbers.

Limit 73 is also obtained by the following equation:

1
I=p :jﬁgt (29)
T 1S

Using the above equation, the following equation is

obtained:

dt+ ! ——dt

J‘\/1+t dt_r\/lﬂ 1+¢° (30)

Finally, the following equation is obtained:

1
7=, ———=dt (31)
’ J% 1+¢°

Eq. (29) represents the following equation:

sleafh, (773)= \/15 (32)

4. Extended Definition of Hyperbolic Leaf Function
cleafhn(l)

With respect to an arbitrary variable /, the value of the leaf
function cleaf,(l) can be obtained. On the other hand, except
for the basis n = [, the hyperbolic leaf function cleafh,(I)
can only be obtained within the domain of the variable:

—¢, <l<¢, (n=234,-) (33)

The function is not supported for arbitrary variable /.
Therefore, the hyperbolic leaf function is redefined as the
multivalued function, so that the arbitrary variable r can
correspond to the arbitrary variable /
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Fig. 2 Curve of the hyperbolic leaf function » = cleafh:(1)

In the case of the basis n = 2, the curve of the hyperbolic
leaf function is shown in Fig. 2. Numbers (1)—(10) represent
the domain. By separating domains (1)—(10) with respect to
the variable /, the relation between variable » and variable /

is redefined. First, in the domain (1), gradient d//dr becomes

negative.
d___ L (1, —sp<i<—ap,) (34)
dr rt—1

The initial condition in the domain (1) is defined as the

(1) = -4n..
integrated from the number / to the variable r.

initial condition: The above equation is

s, [
R N G5)

(r>1, —5p,<I<-4n,)



In the domain (2), gradient dl/dr becomes positive.

d 1
dr |

(r>1, —4n,<l<-3n,) (36)

The initial condition in domain (2) is defined as the initial
condition: /(1) = -45,. The above equation is integrated from
the number / to the variable r.

dt =—4n,

1(-)=1(1) + IJtlﬁ

(r>1, —4n,<I<-3n,)

|
+ J.] 7\/ﬁdt (37)

In the domain (3), gradient dl/dr becomes positive.

dl 1
dr rt-1

(r<-1, =3np,<i<-2n,) (38)

The initial condition in the domain (3) is defined as the
initial condition: [(-1) = -2n,. The above equation is

integrated from the number -/ to the variable 7.

] -1 1
1(r)=1(=1)+ Lﬁd’ =2, - N (39)

(r<—1, —3n,<1<-21,)

In the domain (4), gradient dl//dr becomes negative.

a1

dr rt-1

(r<-1, —2m,<l<-7,) (40)

The initial condition in the domain (4) is defined as the
initial condition: /(-1) = -2x;. The above equation is
integrated from the number -/ to the variable .

=11+ ], (_ ﬁjﬁ o]

(r<-1, —2p,<l<-n,)

In the domain (5), gradient dl//dr becomes negative.

d 1

(r>1, —n,<1<0) (42)

dr rt-1

The initial condition in the domain (5) is defined as the

initial condition: /(1) = 0. The above equation is integrated

from the number / to the variable r.

1(r)=101)+ [ "(— \/ﬂlijdt = f \/tjjdt (43)

(r=1, -n,<1<0)

In the domain (6), gradient dl/dr becomes positive.

dl 1

= (r=1, 0<i<n,) (44)
r r—1

The initial condition in domain (6) is defined as the initial
condition: /(1) = 0. The above equation is integrated from
the number / to the variable r.

co c o1

1(r)=1(1)+ di = d

(r)=101) L\/t4_1 fl\/t4_1 (45)
(r=1, 0<i<n,)

In the domain (7), gradient dl/dr becomes positive.

a1

e 21 n <) (46)
-

The initial condition in the domain (7) is defined as the
initial condition: /(-1) = 2n,. The above equation is

integrated from the number -/ to the variable r.

r l -1 1

(rS—l, 7, <l£2772)
In the domain (8), gradient dl/dr becomes negative.

a1

PR (r<-1, 2n,<I1<3n,) (48)
A

The initial condition in the domain (8) is defined as the
initial condition: [/(-/) = 2n,. The above equation is
integrated from the number -/ to the variable r.

(r<-1, 23,<I1<3n,)



In the domain (9), gradient dl/dr becomes negative.

a1

o (r=1, 3n,<I<4n,) (50)
e

The initial condition in the domain (9) is defined as the
initial condition: /(1) = 4#5,. The above equation is integrated

from the number / to the variable .

1(r)=10)+ L(‘ \/tjj]dt =d4n,-[ ﬁcﬂ 1)

(r>1, 3n,<I1<4n,)

In the domain (10), gradient d//dr becomes positive.

dal 1
dr rt-1

(r>1, 4n,<l<5n,) (52)

The initial condition in the domain (10) is defined as the
initial condition: /(1) = 4#5,. The above equation is integrated

from the number ! to the variable .

()= 100)+ [t = 4,

Nt =1

(r>1, 4n,<I1<5n,)

o1
+.[1 Tﬁdt (53)

With respect to arbitrary variable /, the relation between
variable r and variable / is summarized in Table 2. The
symbols n and m represent the basis and the integer number,
respectively.

In the case of the basis n = 2, 3, 4, 5, and /00, the graphs
are shown from Fig. 2 to Fig. 6, respectively. The vertical
axis and the horizontal axis represent variable » and variable
[, respectively. Alternatively, both curves of a downward
convex and an upward convex exist. In the case of a small
basis n, the curve tends to be smooth and rounded. In the
case of a large basis n, the curve tends to be sharp and

angulated.

Table 2 Relation between variable 7 and variable / (Based on

the hyperbolic leaf function cleafh:(1)) (except for n=1)

Domain Domain of cleafh,(l) | Initial Calculation formula
condition and derivative
(1) -51’]2<l:<-4l’]2 l=—4l’[2 . 1
l(r):—477 Lﬁdt
rgl r=1 dl 1
;_7 -1
2 -4y, =1<-3 =4 ’
2) 2 2 2 l(r)——4772+J *dl t
P -1
rgl r=1 dl 1
dr- -1
3) S3n,<l=-2y, 1=-2n; o
I(r)=-2 —
(r)=-2m.-[ N
r=-1 r=- d_ 1
dr -1
4 -2y, =I<- [=-2 ,
@ "2 2 G 1(r)=-2m,+ [ ‘(Tlillt
r:<*1 r=- dl 1
& -1
5 <l=0 =0 .
(5) 72 )= L
VAR |
751 r=1 dl 1
E77Vr471
(6) 0=I<n, =0 T
1(r)=] ﬁdz
t -1
r=1 r=1 dl 1
dr =1
(7) n<l=2n; =2, S
1(r)=2n, - [ ———at
R
r=-1 r=-1 dl 1
E7«/r4—1
8 2, =<3 =2 .
(®) 12 12 " e)=2m,+] ,41,1 .
l"=<_] r=-1 dl 1
ar rt-1
(9) 31’[2<l:<4}72 1247]2 ’ 1
1(r)=4n, - [ ———d
(r) 41, J.Imt
r=1 r=1 dl 1
;77 -1
(10) 41’[2:<l<5i72 1247]2 ;1
I(r)=4n, +.[| *d,ﬁt
r=1 r=1 dl 1
;7 =1




Table 3 Relation between variable » and variable / (Based on

the hyperbolic leaf function cleafh,(l)) (except for n=1)

Domain of cleafh, (1) Initial Calculation formula and
condition derivative
dm-1)n,<l =4mn, 1=4mn, r 1
(dm=Ln i i l(r)=4m77"fjl —dt
| /2‘2”71
r=1 r=1 dl 1
dr an_l
dmn, =I<(4m+1)n, 1=4mn, - 1
gy SI< (et m 1) =4, + |~
1 [2n_1
r=1 r=1 dl 1
dr ;71
Im+Dn,<l= (4m+2)n, | 1= (4m+2)y,
(4m+1D)y (4m+2)y (4m+2)y l(r)=(4m+2)r7,,—'f'#dz
r l[2u_1
r=-1 r=-1 dl 1
dr r2n_1
Im+2)n,<l = (4m+3)n, | 1= (4m+2)y, -
(dm+2)n (3 (4m+2)n l(r):(4m+2)77,,+_[1*d1 t
- /l2u_1
r=-1 r=-1 2/ 1
dr
15
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Fig. 3 Curve of the hyperbolic leaf function r = cleafhs(l)
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Fig. 4 Curve of the hyperbolic leaf function r = cleafh(l)
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Fig. 5 Curve of hyperbolic leaf function » = cleafhs(l)
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Fig. 6 Curve of the hyperbolic leaf function » = cleafh po(1)

5. Relation Between Hyperbolic Leaf Function cleafhu(l)
and Other Function

In the case of the basis n = I, the relation between the

functions cleafh;(1) and sleafh,(l) is obtained as follows:

(cleafn, (1)) = (steafn, (1))" =1 (54)

The above equation represents the relation between the
hyperbolic function cosh(l) and the hyperbolic function
sinh(l).

In the case of the basis n = 2, the following equations are

obtained:
cleaf ,(1)- cleafh ,(1)=1 (55)
cleafh , (\/5 ): L+ (s, () (56)

1 (steafh , (1))

For more information, see appendix B and C. In the case of

the basis n = 3, the following equations are obtained:



(cleahs (1)) —(steafh y(1))* —2(cleafh; (1)) (sleafh; (1)) =1
(4m 1), <l <(@dm+1),

(57)

The functions cleafhs(l) and sleafhs(l) are defined as the
multivalued function with periodicity 73 and periodicity (3,
respectively. Periodicity 73 does not match periodicity (.
Periodicity #3; of the function cleafhs(l) is shorter than
periodicity (s of the function sleafhs(l). The above equation
is satisfied in the partial domain: ((4m - 1)n3 < [< (4m + D)n;3,

m: integer number).

6. Addition Theorem of Leaf Function

The addition theorem of the hyperbolic leaf function is
described in this section. In the case of the basis n = I, the

following equation is obtained:

sleafh (I, + 1) = sleafh (1,)- cleafh (1, )+ cleafh (1, )- sleath \(L,)
(58)
cleafh (I, + 1, )= cleafh (1,)- cleath \(1, )+ sleafh (1,)- sleafh ,(l,)
(59)
These equations represent the relation between the
hyperbolic function sinh(l) and hyperbolic function cosh(l).
In the case of the basis » = 2, the following equation is

obtained:

sleafh ,(I,+1,)=

sleafh , (I, W1+ (sleafh ,(1,))" + sleafh , (1, W1 + (sleah ,(1,))"

1- (Sleaﬂ’l 2 (11 ))2 (Sleafh 2 (12 ))2

(60)
cleafh ,(1,+1,)
_ 2cleafh , (1, )eleafh , (1, )+ cleafh , (I, )eleafh ,(1,)
1+ (Cleaﬂ" 5 ))2 + (cleaph , (12 ))2 — (cleafn,, (1,)) (Cleaﬂ" N5 ))2

(61)

In the above equation, the superscript prime of the
hyperbolic leaf function represents the derivative with
respect to variable /. Based on the data from table 3, the sign
(plus or minus) of the derivative is decided. In the case of
the domain: 4mn, = [; = (4m + 2)n; and dmn: = [, = (4m

+ 2)n, (m: integer), the following equation is obtained:

(62)

cleafh ,(1,) = /(cleath , (1,))’ ~1

cleafh ;(lz)z (cleafh 2(12 ))4 -1 (63)

cleafh , (11+12)

_ 2cleafh, (11 )Cleafh 2 (lz )+ \/(Cleaﬂz 2 (11 ))4 ~ 1\/(Cleaﬂ 2 (lz ))4 -1

1+ (cleafh , (1)) + (cleah , (1)) = (cleafh , (1)) (cleath, (1, )’
(64)

In the case of the domain: 4mn, = [; = (4m + 2)n; and (4m
+ 2y = L = (4m + 4)n,, the following equation is
obtained:

cleafh ;(l, )= (cleafh 2(ll ))4 -1 (65)
cleafh ,(1,) = —+/(cleafh ,(1,))" -1 (66)

cleafh ,(I,+1,)

_ 2cleafh, (1, )eleafh , (1)~ [ (cleath , (1)) —1+/(cleah ,(1,))' 1

1t (cleafh, (1)) + (cleafh , (1,))" = (cleafh, (1)) (cleath, (1, ))
(67)

In the case of the domain: (4m + 2)n> = [} = (4m + 4)n>
and 4mn; = I, = (4m + 2)n., the following equation is

obtained:

cleafh ;(11 ) =7V (Cle‘?fh 2(11 ))4 -1 (68)
cleafh ;(l2 )= (cleafh 5 (lz ))4 -1 (69)

cleafh (1, +1,)

_ 2cleafh 2(11 )cleafh 2 (lz )_ \/(Cleafh 2(11 ))4 - l\/(cleafh 2(12 ))4 -1

1+ (Cleafh 2 (ll ))2 + (deafh 2 (12 ))2 - (Cleaﬂ" 2 (l] ))2 (deafh 2 (Zz ))2
(70)

In the case of the domain: (4m + )i = [} = (4m + 4)n>
and (4m + 2)n; = b = (4m + 4)n,, the following equation
is obtained:

cleafh (1) = = (cleafh , (1,))" ~ 1

(71)



cleafh ;(lz ) == (Cleqfh 2 (lz ))4 -1 (72)

cleafh ,(1,+1,)

—1\/cleafh @) -1

_ 2cleafh (1, )eleafh , (1) ++/(cleaph , (1,))
1+ (deqjh 2(11 ))2 + (deafh 2( 2 ))2 - (deqjh z( 1 )) (cleqfh z( 2 ))2

(73)
7. Maclaurin Series of Hyperbolic Leaf Function

In this section, the Maclaurin series is applied to the
hyperbolic leaf function. In the case of n = 2, the function
cleafh:(l) is expanded as follows:

1 3 7
I D=1+ +=*+=1°+=—1*+0(" (74)
cleafh, 1) 20 100 a0 )

For more information, see Appendix A. Symbol O(/"?)
represents the Landau symbol (the big O notation).

Ly 3 7
1 D-|1+P+=1"+ =1+ —1*
hmOQQZCMﬁA)[ 2" 100 40 J_EL

- (75)
150 10 /" 600

Subsequently, in the case of n = 3, the hyperbolic leaf
function cleafhs(l) can be expanded by the Maclaurin series

as follows:

12 ey e 5083 4 o) (76)
2078 16 896

cleafh(I) =
In the case of n = 4, the hyperbolic leaf function cleafh(l)

can be expanded by the Maclaurin series as follows:

4 140 502

cleafh,(1)=1+20* + 131 +Tz°+718+0(11°) (77)

In the case of n = 5, the hyperbolic leaf function cleafhs(l)

can be expanded by the Maclaurin series as follows:

cleafh (1)=1 —12 785 I+ %1" 278791625

o)

(78)

8 . Relation Between Leaf Function cleafy(l) and
Hyperbolic Leaf Function cleafhn(l)

Using complex numbers, the relation between leaf function
cleaf,(l) and hyperbolic leaf function cleafh,(l) is shown.
The complex variable i -/ is substituted for the variables / in
the Maclaurin series of both functions cleaf,(l) (See Ref.[2])
and cleafh,(l). Symbol i represents the imaginary number. In
the case of the basis n = I, the function cleaf;(l) and the
function cleafh;(l) represent the function cos(l) and the
function cosh(l),

respectively. Therefore, the following

equation is obtained:
cleaf,(i-1)= cleafh,(I) (cos(i-1)=cosh(/)) (79)

In the case of the basis n = 2, the following equation is

obtained:
cleafh,(i-1)
3 7
_1 ZZ . ..16 llO
P 0 s g e o)

=1+i2-12+li4-14+ii°.z°+li8-1*+0(i1°~11°)

2 10 40
Sl 3 T 0()= cleaf, (1)

2 10 40

In the case of the basis n = 3, the following equation is
obtained:

cleafh,(i-1)

= +§i2~lz+Ei4-l4+ﬂi6-l(‘+&i8~lx+0(ﬂ°-lm)
16 896
15, 51 5085
—l—fl2 -+ —=—=F-0l")=cl /
8 16 6 )= cleat, (1)

(81)

In the case of the basis n = 4, the following equation is

obtained:
cleafh,(i-1 )
14224 414 140616 502 8~18+0(i10~110)

=1-2I"+ —14—14—0[6 502[
3 9 9

O( 10): cleaf ()
(82)

In the case of the basis n = 35, the following equation is



obtained:

cleafhy(i-1)
:1+§i2 e +Ei4 A +gi6 A0+ 277125
2 16 896
750 825,

5 277125
=1-—pP+= + I -0l )= cleaf. (1
2 8 16 896 ( ) cleaf (1)
(83)

Based on the above results, the following equation can be
predicted:

cleafh, (i . l) = cleaf, (l) (84)

9. Conclusion

In this report, the hyperbolic leaf function: cleafh,(l) is
defined. The second derivative of the function is equal to the
positive operator of the function with power 2n - [ (n:
natural number). The conclusions are summarized as
follows:

* In the case of n = 1, the function: cleafh,(l) represents the
hyperbolic function: cosh(l).

= As number #n increases, the smooth curve of the function
tends to be a convex or concave curve.

* In the case of the condition n =2, the function cleafh,(l)
has the limit with respect to variable /.

* The equation between the hyperbolic leaf function and the
leaf function is formulated by using the imaginary number.
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Appendix A

In the case of n = 2, 3, 4, 5, the derivative and the
Maclaurin series of the hyperbolic leaf function are
described in this section. First, the hyperbolic leaf function:
cleafh(l) is expanded as the Maclaurin series. The first

derivative of the hyperbolic leaf function cleafh,(l) is as

follows:

%cleafhz(l) = ﬂ(cleaﬂz2 (l))4 -1 (A1)

The second derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

ég;ckqmzﬂ):2~Q%nﬂb(Uf (A2)

The third derivative of the hyperbolic leaf function cleafh:(l)
is as follows:

jTZCZeafhz(l)Z 6.(cleafh2 (l))2 ) (cleafh2 (Z))4 Ay

The fourth derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

jl—zcleafh L(1)=12 - cleatn , (1)- (2(cleafh L) - 1) (A4)

The fifth derivative of the hyperbolic leaf function cleafh:(l)
is as follows:

%cleaﬂzz(l): 12- (10 -(cleaﬂz2 (l))4 -1 (cleafh2 (Z))4 -1
(AS)

The sixth derivative of the hyperbolic leaf function cleafh(1)
is as follows:

j%czeam (1) = 72cteatn, (1)) (0leteam, () ~7)  (A6)

The seventh derivative of the hyperbolic leaf function
cleafhy(l) is as follows:



7

d
il cleafh, (1)

(cleafh ) (l ))4 -
(A7)

= 504(clean, (1)) (10(cleafh L) -

The eighth derivative of the hyperbolic leaf function
cleafh(l) is as follows:

jl—gcleaﬂzz (Z) (A8)
= 1008 cleafh, (1)(3 —36(cteafn, (1)) +40(clear, (1)) )

The ninth derivative of the hyperbolic leaf function
cleafh:(l) is as follows:

%cleafh2 )
= 3024 (1 —60(cleath, (1)) +120(cteasn, (1)) \(ctearn, (1)) -
(A9)

The tenth derivative of the hyperbolic leaf function cleafh(l)
is as follows:

10
— cleafh, (l)

= 6048 (cleafh, (1)) (121 —660(cleath, (1)) + 600 (cleafh, (1))8)
(A10)

The eleventh derivative of the hyperbolic leaf function
cleafh:(l) is as follows:

11

dlll
(1 1-140 (cleafh ,(7 ))4 +200 (cleafh2 (1 ))8 (cleafh ,(7 ))4 -1
(A11)

L cleafh, (1) = 199584 (cleafh, (1)) -

The twelfth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

jl‘z cleafh, (1) = 399168 cleafh., (I)-
(— 11+ 2(cleafn, (1)) (221 —780(cleaph, (1)) +600(clearn, (1)) ))
(A12)

The thirteenth derivative of the hyperbolic leaf function:
sleafhy(l) is as follows

13

P = cleafh, (I)=399168 (cleqfh2 (l))4 -
-%11+ 130(cleaph, (1))’ (17 —~108(cleafn, (1)) +120(cleatn, (1)) )}
(A13)

Using the derivatives from Eqgs. (A1)-(A13), the Maclaurin
cleafhy(l) is

series of the hyperbolic leaf function:

formulated as follows:

ceaf (1) = lea (0) 5 4 clea, (0)) + ;[ < cleafh, 0 )]

+ ;[}cleaﬂz(O)Jl3 +ot l'Edgcleajhz(O)]lg +

212 206 T056 o)
2 4 6!
LY +E16+—18+0(‘°)

(Al14)

Symbol O represents the Landau symbol. Using the above
equation, the second derivative with respect to variable / is
obtained as follows:

(A15)

2
%cleafhz(l)=2+6lz+9l4 4591 +o(*)

Using Eq. (A14), the following equation is obtained:

(cleaﬂz ( ))

3
(1+12 114+316+718+0(1‘°)j
20 100 40

49

= 2460 + 90"+ 1" +o(™)

(A16)
Eq. (A15) is equal to Eq. (A16). Therefore, the hyperbolic
leaf function: cleafh:(l) satisfies Eq. (1). Subsequently, in the
case of the basis n = 3, the Maclaurin series is applied to the
hyperbolic leaf function: cleafhs(l). The first derivative of
the hyperbolic leaf function: cleafhs(l) is as follows:

(A17)

d s
Ecleafh3(l)= (Cl@afh3(l)) -

The second derivative of the hyperbolic leaf function



cleafhs(l) is as follows:

szzcleaﬂt3(l)=3-cleaﬂt35(l) (A18)

The third derivative of the hyperbolic leaf function cleafh;s(l)
is as follows:

573301661]%3 (l) =15- (cleafh3 (l))4 . (cleqfh3 (l))6 -1 (A19)

The fourth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

jl—:cleaﬂl ,()=15 -(cleaﬂl 5 (l))3 -(7 (cleafh 5 (l))6 - 4) (A20)

The fifth derivative of the hyperbolic leaf function cleafhs(l)
is as follows:

dS
ﬁcleafhxl) (A21)

= 45(cleaﬂz3 (1 ))2 (21(cleafh N ))6 -4 (cleafh3 (1 ))6 -1

The sixth derivative of the hyperbolic leaf function cleafh;s(l)
is as follows:

:;TZ cleafh, (l )
= 45cleafh, (1)(8 —188(cleath, (1)) +231(cteatn, (1)) )

(A22)

The seventh derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

(A23)

5777 cleafh, (1) = 45+ (cleafh, (1)) 1

4 7ctean, (1)) 188 + 429 (cteamn, (1))

The eighth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

5—; cleafh, (1) = 2025 (cleafh (1))

: §76 +7(cteapn, (1) (- 152 +143(cleafh, (1)) )}

(A24)

The ninth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

szczeam ()= 22275 (cteapn, (1)) (cteam, (1)) -1 (25
: {80 +7(cleafn, (1)) (- 152 + 221(cleafh,, (1)) )}

The tenth derivative of the hyperbolic leaf function cleafhs(l)
is as follows:

d 10 3
< cleafh, (1)= 22275 (cteapn, (1))

(7 320 + 7(cleafh, (1)) (1600 —5512(cleath, (1)) + 4199 (cleapn, (1))° ))

(A26)
The eleventh derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

d" ;

Wcleqfhg(l):66825(cleq/h3 (1) | (ctearm, (1)) —1

x (7 320+ 7(cleafh, (1)f X4800 —27560(cleafh, (1)) +29393(cleafh, (1))'2)
(A27)

The twelfth derivative of the hyperbolic leaf function

cleafhs(l) is as follows:

12

W cleafh, (I )

= 42768000 cleafh, (1) 1806948000 0 (cleafh, (1))
+2051848260 00 (cleath, (1))’ 494148154500 (clearh, (1))
+3162341432 25 (cleafn, (1))’

(A28)

The thirteenth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

13

%clecy‘h3 (1)=334125 (cleafh3 (l))6 —1x

{128 -378560 (cleafh, (1)) +7983248 (cleath, (1)) (A29)
—28099708(cleafh, (1)) + 23661365 (cleafh, (z))”}

Using the derivatives from Eqgs. (A17)-(A29), the
Maclaurin series of the hyperbolic leaf function cleafhs(l) is
formulated as follows:



U3, 45, 2005 . 208825 .
cleafh3(l)—l+2!l e +o(")
e 2 e 3L ye 3083 s ()

2 8 896

(A30)

Using the above equation, the second derivative with

respect to variable / is obtained as follows:

2
%cleafh3(l):3+47512 76514 3083 16 o(F)  (A3D)

Using Eq. (A30), the following equation is obtained:

5
3+ (cleafn (1)) =3- (1+§12+18514 SELYUNELCSE +0(110))

16 896

765 5085

_3+712 e +o()

(A32)

Eq. (A31) is equal to Eq. (A32). Therefore, the hyperbolic
leaf function cleafhs(l) satisfies Eq. (1).

Subsequently, in the case of the basis n = 4, the Maclaurin
series is applied to the hyperbolic leaf function cleafh(l).
The first derivative of the hyperbolic leaf function cleafh,(1)
is as follows:

(A33)

d S
Ecleaﬂt4(l)= (Cl@afh4(l)) -

The second derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

ZTzzcleafh4 (1)=4-(cteamn, (1)) (A34)

The third derivative of the hyperbolic leaf function cleafh,(1)
is as follows:

(A35)

%cleafh(!)z 28 - (cleajh4 (l))6 . (cleafh4 (l))8 -1

The fourth derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

Ticlea]h(l)z 56- (cleafh4 (Z))5 ~(5(cleaﬂz4 (l))8 - 3) (A36)

The fifth derivative of the hyperbolic leaf function cleafh(l)
is as follows:

5755 cleqﬂu(l) =280 (cleqfh4 (l))4 (13(cleLy"h4 (l)f -3 '\ (cleqfh4 (l)){ -1

(A37)

The sixth derivative of the hyperbolic leaf function cleafh(1)
is as follows:

df)
“cleafh, (1)=1 120 (cleafn, (1)) (A38)

(3 - 45(cleafh4 (l))8 + 52(cleafh4 (Z))IG )

The seventh derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

dT: cleafh , (l) =1120 (cleaﬂz4 (l))2 (cleafh 4 (l ))8 -1
: (9 — 495(cleatn, (1)) +988(cteatn, (1))° )

(A39)

The eighth derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

8
%cleafm (1)=2240cleafn, (1)

: (— 9+2502(cleath, (1)) —12357 (cleatn, (1)) + 10868 (cleafh, (z))“)
(A40)

The ninth derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

szcleafh4(z) = 2240+ (cleatn, (1)) -
(— 9+22518 (cleath, (1))’ - 210069 (cleafn, (1)) +271700 (cleatn, (1)) )
(A41)

The tenth derivative of the hyperbolic leaf function cleafh(1)
is as follows:

10

dl 10
(— 1287 + 25938 (cleath,, (1)) — 76587 (cleafh , (1)) + 54340 (cleafh, (1))2")

(A42)
The eleventh derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

= cleafh,(I)= 313600 (cleq/h N ))7 .



jl—llllcleaﬂu(l) = 313600(clea_/"h4 (l))sw/ (cleafh4 (l))X -1

: (— 9009 + 389070 cleafh, (1)) —1761501(cleafh, (1))° +1684540 (cleatn, (l)f‘)

(A43)
The twelfth derivative of the hyperbolic leaf function:
cleafhy(l) is as follows:

d" :
Wc[eqfh (l): 627200\cleafh, (l)) .
(27027 +17(clean, (1)) (7 162855+13(cleafh, ()] (1 03521-217953(cleafh, (1) +129580(clearh, (1)} )))

(A44)

The thirteenth derivative of the hyperbolic leaf function
cleafhy(l) is as follows:

%deaﬂu (1)= 8153600 (clean, (1))’ y (clearm, (1)) 1 (10395 +17(clean, (1)) -

(7 162855 + 2173941 (cleafh,, (1))’ — 6320637 (cleafh, (1))* + 4794460 (cleafh , (1)) ))

(A45)

Using the derivatives from Eqgs. (A33)—(A45), the
Maclaurin series of the hyperbolic leaf function cleafhy(l) is

formulated as follows:

cleafh, () =1+ 21 + %14 + %16 + %18 +0(1")  (A46)

Using the above equation, the second derivative with
respect to variable / is obtained as follows:

2
%cleaﬂu(l)z 44560 + @14 + %16 +o(*) (A47)

Using Eq. (A46), the following equation is obtained:

7
4-(cleafn (1)) =4- [1 +20% + %14 + %16 + %18 + 0(1‘°)j

1400 28112
[ +7

S 445602+ 1°+0(*)

(A48)
Eq. (A47) is equal to Eq. (A48). Therefore, the hyperbolic
leaf function cleafhq(l) satisties Eq. (1).

Subsequently, in the case of the basis n = 5, the Maclaurin
series is applied to the hyperbolic leaf function cleafhs(l).
The first derivative of the hyperbolic leaf function cleafhs(l)
is as follows:

icleaf5 (l): \/(cleaf5 (l))‘0 -1

dl

(A49)

The second derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

5722 cleafhy(1)=5-(cleafh; (1)) (A50)

The third derivative of the hyperbolic leaf function cleafhs(l)
is as follows:

%;cleaﬂts(l): 45 . (cleafh5 (l))g . (cleafh5 (l)yo -1 (A51)

The fourth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

%cleath(l) =45. (cleafh5 (l))7 : (— 8+ l3(cleaﬂ15 (l)yo)
(A52)

The fifth derivative of the hyperbolic leaf function cleafhs(l)
is as follows:

%cleafks(l) = 45(cleafh5 (l))6 (AS3)

(7 56 + 221(cleafh (1))° N (cteamn, (1))" -1

The sixth derivative of the hyperbolic leaf function cleafhs(l)
is as follows:

ZTZ cleafh(1)=135(cleath, (1))
: (1 12 - 1384(cleafn, (1))° +1547 (cleaph, (1))20)

(A54)

The seventh derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

%cleajhs(l) = 675 (cleatn; (1)) (cteam (1)) -1 (ass)

(12— 4152 ctean (1)) + 7735 cleam, ()

The eighth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:



371 cleafh (1) = 675 (cleafh s (l))3
: (— 448 + 59136 (cleath , (1)) — 264528 (cleatn . (1)) + 224315 (cleafh (z))”)

(A56)

The ninth derivative of the hyperbolic leaf function
cleafhs(l) is as follows:

5—;cleafh ()= 2025 (cleapn, (1)) \/(cteapn (1))° —1

: (7 448 + 256256 (cleaph ; (1)) — 2028048 (cleafh , (1)} + 2467465 (cleafh, (1))‘“)

(A57)

The tenth derivative of the hyperbolic leaf function cleafhs(l)

is as follows:

10

%cleqﬂzs(l) = 2025cleafh, (1)- (896 3078208 (cleath (1))

+ 48973408 (cleafh, (1) — 133716176 (cleafh, (1)} + 91296205 (cleafh, (1))“”)
(A58)

The eleventh derivative of the hyperbolic leaf function

cleafhs(l) is as follows:

ZI—I]‘I(rleafh s (l): 2025 ((rlea_/h s (l))lU -1 (896 +1 l(clea/h 5 (l))]0

(— 3078208 +93494688 (cleafh ; (1)) —376836496 (cleafh . (1)) + 340285855 (cleafh (1))" ))

(A59)

Using the derivatives from Eqgs. (A49)—(AS59), the
Maclaurin series of the hyperbolic leaf function cleafhs(l) is
formulated as follows:

cleafhs(l):1+§]2+El4+g16+277125
2 8 16 896

P+o()

(A60)

Using the above equation, the second derivative with

respect to variable / is obtained as follows:

2

dr’

cleafh (1) =5 +227512 + 12375

jo, 277125

: = 1°+0(*)

(A61)

Using Eq. (A60), the following equation is obtained:

5, 75, 825 . 277125 ’
5-(cl 1) =5- 1+712+—l“+—lﬁ+718+01”’j
(leatn (O =5-(1+3 07+ 24 2200, 2T o)
=5+ﬁ12+%14+w1"+0(ﬁ)

(A62)

Eq. (A61) is equal to Eq. (A62). Therefore, the hyperbolic
leaf function cleafhs(l) satisties Eq. (1).

Appendix B

In this section, the relation between the leaf function
cleaf>() and the hyperbolic leaf function cleafh:(l) is
described. The following polynomial is considered:

xy =1 (B1)

The following equation is obtained by differentiating the

above equation with respect to variable x:

dy 1 (B2)

2
dx X

Using Eqgs. (B1) - (B2), the following equation is obtained:

)
N \/1_(1)4 x ®3)

The following equation is obtained from the above equation:

dy n dx -0 (B4)
\/l—y4 \/x4—1

Variables x and y are defined by the following equations:

x = cleafh, () (BS)
y = cleaf,(l) (B6)
The domain of variable / is as follows:

4mn, <1< (4m+2)n, (B7)



The number m represent the integer. The following
equation is obtained by differentiating the above equation

with respect to variable /:

£ _ et -1 = 9

\/ 1—(cleaf, (1) \/ 1- (B9)

The following equation is obtained by substituting Eqgs.
(B8)—(BY) into Eq. (B4):

dy . dx _ 1 dy N 1 dx
\/l—y4 NI \/l—y4 dl Vxt—1dl
=— ! - Vxt=1dl =0
Vvi-y

(B10)

1
Jxt =1

On the other hand, the domain of variable / is as follows:

(4m—2)n, <1<4mn, (B11)

The following equation is obtained by differentiating the
above equation with respect to variable /:

(B12)

% = (cleafm, (1)) =1 = —x* -1

(B13)

\/1— (cleaf, (1) \/1—

The following equation is obtained by substituting Eqgs.
(B12)—(B13) into Eq. (B4):

dx 1 dl dx dl

dy . 4 1 dx
N \/x4_1_\/1_ 4 dl Jxt o1 dl
\/7\/ yidl - \/7\/ ~1dl =

(B14)

Egs. (B5) and (B6) satisfy Eq. (Bl). Therefore, the
following relation is obtained:

cleaf ,(1)- cleafh ,(1)=1 (B15)

Appendix C

In this section, the relation between the hyperbolic leaf
function sleafh:(I) and the hyperbolic leaf function cleafh:(l)
is described. The following polynomial is considered:

—pxi+y-xt=1 (C1)

The following equation is obtained from the above equation:

_ 1+x7 (C2)

1—x?

The following equation is obtained by differentiating the

above equation with respect to variable x:

dy __ 4x (C3)

dx (1—x2)z

Using Egs. (C2)—(C3), the following equation is obtained:

1 dl: 1 4x
Jyt -1 dx \/[1”2}4_1 () C4)
1-x
_ (l—xz)Z 4x \/7 X
2\/§‘x‘m (1—)c2)2 \/7‘)4

where the above equation is applied to /x> = \x\ In the

inequality x = 0, the above equation is transformed as
follows:

dy _ dx ~0 (C5)

\/y4—l \/l+x

The variables x and y are defined by the following equations:

x = sleafh, (1) (Co6)
» = cleafh,(\/21) (C7)

In the condition x = sleafh,(/)> 0, the domain of variable /

is as follows:



dmn, <1< (4m+2)y, (C8)

The number m represent the integer. The following equation
is obtained by differentiating the above equation with

respect to variable /:

= 1+ (steafn, (1)) =1+ x* (C9)

(C10)

% =2 (cleafhz(\/zl))4 -1= \/E\/)T—l

The following equation is obtained by substituting Egs.
(C8)—(C9) into Eq. (C5):

L BN, Y S

dy _\/*
w/y4—1 Vxt+1 1/y —1dl

Vxt+1dl
-1 5 »* —ldl—L\/x“ +1dl =0
Jyt =1 Vxt+1
(C11)

In the inequality x < 0, the above equation is transformed as
follows:

vy pH_& (C12)

\/y4—1 \/l+x

In the condition x = sleafh, (/)< 0, the domain of variable /

is as follows:

(4m—2)n, <1<4mn, (C13)
Using Egs. (C6) and (C7), the following equation is obtained

by differentiating the above equation with respect to variable
L

= 1+ (steafn, (1)) =1+ x* (C14)
% = V2 (cteapm, (V21 ) —1 = - (C15)

The following equation is obtained by substituting Egs.
(C14)—~(C15) into Eq. (C12).

O S S S TN )

—dl
\/y -1 \/x +1 \/y —1dl Nxt+1dl
_ _\E\/ﬁ)dn V2 Vxt +1dl =0
\/y4—1( Vxt+1

(Cle6)

gs. (C6) and (C7) satisfy Eq. (Cl). Therefore, the
following relation is obtained:

1+ (sleafh 5 (Z))2
1 (sleafh , (1))

cleafh ,(V21)= (C17)

Appendix D

In this section, the relation between the hyperbolic leaf
sleafhs(l) and the hyperbolic leaf function:
cleafhs(l) is described. The following polynomial is

function:
considered:
xP -y -2x*y =1 (D1)

The above equation is solved for variable y.

A (D2)

The following equation is obtained by differentiating the
above equation with respect to variable x:

- 3x (D3)

Vx? —1(1+2x2)%

&S

Using Egs. (D2)—~(D3), the following equation is obtained:

1 dl_+ 1 3x
= 3
1+ y© dx o NSRRI NS
NV2x? +1
3
o e222) 3x

ettt LT (14200
X

=1
\/x2 —l\/x2 +x* +x°

- X - 1
‘x‘\/xﬁ—l \/xf’—

(D4)



The following equation is obtained from the above equation:

dy + dx _0 (D5)

w/l+y6 _\/xé—l

Variables x and y are defined by the following equations:

x = cleafh,(I) (D6)

v = sleafh;(!) (D7)

The following equation is obtained by differentiating the
above equation with respect to variable /:

f; \/(cleafh3( D) -1= +/x0 —1 (D8)

\/1 + sleafh \/1 +° (DY)

Using Eq. (DS), (D8) and (D9), the following relation is
obtained:

(cleah; (1)) —(steafh y(1))* —2(cleafh; (1)) (sleath; (1)) =1
(4m =1y, <1< (4m+1)y,

(D10)

Appendix E

To prove the addition theorem of Eq. (64), we define the
following equation:

L +1,=c (ED)

Symbol ¢ represents the arbitrary constant. Using Eqs. (E1)
and (64), the following equation is obtained:

cleafh ,(c)=

2cleafh , (1, cleafh ,(c — 1, )+ \/(cleafh 71\/ (cleafn ,(c —1,))! -1

1+ (cleafh , (I, )) (cleafh ,(c —1,)) - (cleaﬂ1 (L)Y (cleafh ,(c - 1))
(E2)

The right side of the above equation is defined as follows:

F(ll)z

2cleah, (1, Jeleath , (¢ ~ 1)+~ (cleath , ()" =14/ (cleath , (e~ 1,))' -1
1+ (cleafh , (1))’ + (cleafh , (c = 1,))" — (cleafh , (1,)) (cleafh ,(c — 1,))

(E3)

The symbol cleafhs(c) is just a constant. The following
equation is derived from Eq. (E2) and Eq. (E3):

F(ll ): cleafh , (C) (E4)

Therefore, function F'(I;) also has to be a constant.

oF () _, (ES)
al,

If the above equation is satisfied, function F(/;) becomes a
constant. To prove Eq. (ES), function F(/;) is differentiated
with respect to variable /;.

oF (I, ) {cheafh (1, )eleafh , (c —1,) + \/(cleq/h L)) - h/(c[eqfh Se-1)) - 1}
b e (cteam , (1)) + (cleah , (e~ 1,)) — (cleath , (1,)) (cleath , (c = 1,)) |
+ (clean , (1,)) + (cleafh , (c = 1))} ~ (cleath , (1, )Y (cleafh , (c  1,))’ |

e

. {aneafh L (1) )eteatn , (. \/(cleafh @) 71\/(clcafh (c-1,)) 1}
{1+ (cleam , (1)) + (cleafh z(c 1) - (cleah , (1,)) (cleafh ,(c ~1,)) |
<L+ (cleafh , (1)) + (cleafh , (c 1)) ~ (cleah , (1, )Y (cleafh , (c ~ 1,)Y |

(E6)

On the other hand, the following equation is obtained:

beteats 0 teat 1+ cteat, )] 1 iteat (e~} 1|
= 2cleafh 2(11 ){(Cleafh 2([] ))2 - 1} (Cleafh z(c -4 ))4 -1
—2cleafh ,(c -1, ){(cleafh ) (c -1 ))2 - l}\/(cleafh L) -1

(E7)

i+ (cteath 1)) + (cleafh  (c ~ 1))~ (cleaph 0, (clea ,(c 1))}
~ 2cteat, 1, eleafh e ~ 1, teat (0, W@lea (e~ 1)) —1 - cleat (¢ ~ 1, Wiclea 0, 1}
+ 2cleafh , (1, W(cleatn , (1,))' 1 = 2cleafh , (¢ — I, W (cleafh , (¢ — 1,))' —1

(E8)
By substituting Eqgs. (E7) and (ES8) into Eq. (E6), Eq. (ES) is

obtained. Function F(l;) does not depend on variable /;.
Therefore, the following equation is obtained:

F(1,)=F(0) (E9)
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By substituting /; = 0 into Eq. (E3), the following equation is
obtained:

(0)= 2cleafh , (0)cleafh , (c )+ \/(cleafh ,(0))' - 1\/(cleafh L(e)) -

1+(cleafh 0)) + (clean , ( ))2 (clean ,(0)) (clean ,(c))’

ZCleafh +A1—14 cleafh

1+1+ (cleafh ()) - (cleafn , (c))

= cleafh , (c)

(E10)

From Egs. (E9) and (E10), Eq. (E4) is obtained. The proof is
the same as Egs. (67), (70), and (73).

Appendix F

Using imaginary number i, Eqs. (54)—(57) can be derived
by using Egs. (65)~(67) in Ref. [2]. As shown in Eq. (84),
the hyperbolic leaf function is related to the leaf function
through imaginary number i. By replacing variable / into

variable i -/, the following equation is obtained:

cleafhn(— l): cleaf, (i~l) (F1)

The hyperbolic leaf function cleafh,(l) is the even function.

The following equation is obtained:

cleafh, (l) = cleaf, (i . l) (F2)

In a similar manner, as described in the above procedure,
the following equation is obtained by using Eqgs. (30)—(32) in
Ref. [3]:

sleaf,, (~1)=i-sleafh,, (i-1) (m=123,,---) (F3)

sleaf’,,, (— l) =i-sleaf,, (i . l) (m = 1,2,3,---) (F4)

sleafh,, (—1)=i-sleafh,, (i-1) (m=123,---) (F5)

The hyperbolic leaf function sleafh,(l) is the odd function.
The following equation is obtained:

i'SleafZ)nfl(l): Sleathmfl(i.l) (m :1’2’3”“.) (F6)

i-sleaf,, (l): sleaf,, (i . l) (m = 1,2,3,---) (F7)

i-sleafh,, (l): sleafh,, (i~l) (m = 1,2,3,---) (F8)

In the case of the basis n = I, the following equation
between the leaf function and the hyperbolic leaf function is

obtained:

(steaf(i- 1)) +(cleaf(i-1)] =1 (F9)

By substituting Eqs. (F6) and (F2) into Eq. (F9), the

following equation is obtained:

(i-sleqfhl(l))z +(cleafh1(l))2 =1 (F10)

(cleafn, (1)} —(stearn,(1)f =1 (F11)

The above equation has the same relation between the
hyperbolic function sink(l) and the hyperbolic function
cosh(l). In the case of the basis n = 2, the leaf function:
sleaf>(l) is related to the leaf function: cleaf>(1).

(sleaf) (l))2 +(cleaf(l ))2 +(slea£(l))2 (cleaf) (l))2 = (F12)

By replacing variable / into variable i -/, the following

equation is obtained:

(steafli-1)) +(cleafli-1)} +(sleaf(i-1)} -(cleafli-1)} =1  (F13)

By substituting Egs. (F7) and (F2) into the above equation,
the following equation is obtained:

(i-steaf (1)) +(cleath (1)) +(i-sleat (1)) -(cleafh,(I)) =1 (F14)

~(steaf (1)} +(cleafh (1)) (sleat 1)) -(cleafn,(1)] =1 (F15)

By substituting variable / into variable+/2/, the following
equation is obtained:

—(sleajg(\/il))z +(cleafh2(x/§-l))2 —(sleafz'(x/i-l))2 ~(cleafh2(\/§ ~l))2 =1 (F16)
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By substituting Eq. (33) in Ref [3], the following equation is

obtained:

 AteaOF [, Asdea i) (e

a2
(F17)

The above equation is simplified as follows:

= (steam () | (cteam, (V2 1] ~{i+(steam() | =0 (F18)

Eq. (56) is obtained from the above equation.
In the case of the basis n = 3, the leaf function sleafs(l) is
related to the leaf function cleafs(l).

(steaf, (1)) +(cleaf (1))’ +2-(sleaf(1)) -(cleaf(1)) =1 (F19)

By replacing variable / into variable i -/, the following

equation is obtained:

+(cleaf(i-1)] +2-(sleaf(i- 1) -(cleaf(i-1)) =1
(F20)

(steaf(i-1)f

By substituting Eq. (F2) and (F6) into Eq. (F20), the

following equation is obtained:

(i - steafn (1)) +(cleafn (1))’ +2-(i- steafn,(1))’ - (cleafn,(1)} =1 (F21)

(cleafh (1)) —(sleafn,(1)] —2-(sleafh(1)) - (cleafh(I)] =1(F22)

The Eq. (57) is obtained.

Appendix G

In the case of the basis n = 2, the addition theorem of the
leaf function sleaf>(l) is obtained as follows:

sleaf ,(1, £ 1,)=

sleaf , (ll) 1- (sleaf2 (lz ))4 * sleaf, (lz 1- (SIlez ¢, ))4
1+ (Sleafz (11 ))2 (SZeafz (lz ))2

(G1)

By replacing variable / into variable i -/, the following

equation is obtained:

sleaf ,(i-1, +i-1,)=

sleaf , (i -1, W1~ (sleaf, (i-1,))" + sleaf, (i -1, W1~ (sleaf, (i -1,))’
L+ (steaf', (i1, ))2 (steaf , (i L))

(G2)

By substituting Eqgs. (F7) into the above equation, the

following equation is obtained:

i-sleaf (I, +1,)=

i-sleaf ,(1, W1—(i-sleaf,(1,))! +i-sleaf, (I, \1-(i-sleaf,(l,))"

1+ (i -sleaf , (1, ))2 (i sleaf , (1, ))2
(G3)

The above equation is simplified as equation (G1).
In the case of the basis n = 2, the addition theorem of the

leaf function cleaf>(l) is obtained as follows:

cleaf , (I, +1,)=

cleaf , (11 )\/ 1- (Sleaf2 (lz ))4 — sleaf, (lz )\/ 1- (cleaf2 (11 ))4

1+ (cleaf , (1,)) (steaf , (1, )}

(G4)
By replacing variable / into variable i -/, the following
equation is obtained:
cleaf (i1, +i-1,)=
cleaf , (i -1, W1~ (sleaf, (i -1,))* —sleaf, (i -1, W1 - (cleaf,(i-1,))'
1+(cleaf2(i-l1 ))2 (sleaf2 (i~l2 ))z

(G5)

By substituting Eq. (F2) and Eq. (F7) into the above

equation, the following equation is obtained:
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cleafh, (I, +1,)

_ cleafh , (1, W1 - (i - sleaf ,(1,))" —i-sleaf (I, W1 - (cleafn, (L))"

1+ (Cleafh 2 (11 ))2 (i - sleaf , (lz ))2

_ cleafh (Z, )1/1 - (sleafz (l2 ))4 —i-sleaf (l2 NI (cleafh 2(ll ))4

1= (cleafh, (1, )Y (steaf , (1, )’

(G6)
The range of the hyperbolic leaf function is as follows:
cleafh (l) >1 (G7)

The root of the second term becomes negative. Therefore,
Eq. (GO6) is defined as follows:

cleafh (I, +1,)

_ cleafh , (I, W1 (sleaf, (1,))" —i-sleaf,(I,) i
1—(cleafn , (1,)) (steaf , (1,))’

(Cleaﬂ” 2 (ll ))4 -

_ cleafh, (1l W1 = (steaf ,(1,))" + sleaf', (1, )V (cleafh, (1,))" -
) 1= (cleafn, (1,)) (steaf', (1, )}

(G8)
The following equation is obtained from Eq. (F15):
sleaf(l)== (cteaf,(1)] -1 (G9)

(cleafn (1)) +1

By substituting the above equation into Eq. (G8), the
following equation is obtained:

cleafh , (l1 +1, )

(cleatn, (1,)) -1 ’ 4 (clean, (1,))* -1
cleafh (I )\/l - [(cleafhz(l2 )+ 1] "\ (cleatn, (1,))* +1

, of (cleafh, (1,))* ~1
1 (cleafh, (1,)) [W}

(Clea_fh 2 (l! ))4 -

(G10)

By multiplying the numerator and the denominator
by (cleafh (I ,)f +1, the above equation is simplified as

follows:

cleafh, (I, +1,)
_ cleafh, (I, )\/( (cleafn

W 1] — ((cteam, (1,) ~1F +(ctearn,(0,)) — 1+ (ctearn, 0, ~1
(cleafh (L)) +1-(cleafn, (1, (clean, (1,)f —1)

W +1F = ((cteatn, (1) —1F +\(ctean (1)) —1y(cteatn (1, ) —1
(cleafh ( )) +1- ((leafh ( )) ((cleafh ( ))Z )
_ clea_fh \/4 cleafh  + \/ Lleafh l ) h/(vleafhz( ))4 1
(clez/h t )) (clez/h [0 )) (cteam, (1)} 1)
_ 2cleafh, (i Jeleafh (1, )= \[(ctea , (1))" ~1\[(cteatn , (1,))" -
1+ (cleatn, (1)) + (cleafn, (1, )) - (clca/h (1)) (cleapn (1, ))
_ 2(:[3(1_[712(1,)Cleqfhz(lz)+cleqfh_;(ll)c‘leafh;(12)

1 (cleah, (1)) + (cleath, (1))~ (cleah, (1)) (cleath, (1,))

_ cleafh Wl(etearn

(G11)

In the above equation, the superscript prime ° of the
hyperbolic leaf function represents the derivative with

respect to variable /.

Appendix H

In this section, the relation between the hyperbolic
function cosh(l) (=cleafh;(l)) and the hyperbolic leaf
function cleafh,(l) is described. The following equation is
considered:

(cleafn, (1)) = cosh(n@) n=1,2,3,- (H1)

Using the above equation, the following equation is
obtained:

0= %ar cosh ((cleafh,, @) )
= %ln((cleaﬂl,, o) +

n=1,2,3,

(ctearn, ()" -1 (H2)

The above equation is differentiated with respect to

variable /.

40 lctea ()"
dl n\/ (cleqfhn (l ))2" -
= (cleafh, (1))

The following equation is obtained by integrating the above

(cleaﬂz ( ))2" (H3)

equation from 0 to [:

6 = | (cleafh, (0))"'di (H4)

— 103 —



Using Egs. (H1) and (H4), the following equation is
obtained:

(cleafh, (1)) = cosh(n [/ (clean, (;))Hdtj (HS)
n=1,23,--

Note that the above equation is satisfied with the inequality:
cleafhy(l) =1, if the basis n is odd number.

Appendix I

The integration of the hyperbolic leaf function:
(cleafh,(1))" is obtained as follows:

g [[ (cteam (1)) ar
[\/ (cleath (

0<l<n,
n=2,3,-

+1+\/cleafh ) —IJ—IH\/E

n

The proof is as follows :

< ctea (1) +1)-
) + IT

_n cleafh (1)) \/((cleafh
2 J(cteam (i n( ))

:g(cleafh SO (cean (1)) -

7l ( cleafh ' + IT
n(cleafn [ -\(cleafh (1)) -

! + lx cleafh ) ) )

%( cleafh
(

12)
%( (cleafh (1)) - ) d (cleafh —IT
%( cleafh (1)) - IT n(cleafn [ -y (clean (1)}" -
_n (cleatn (I ))"71\/ ((cleafh '+ lx (cleatn (1)) — 1)
2

(cleafh n( )) -
- g(cleafh () (cleam (1) +1
(13)

Using Eq. (I12) and Eq. (I3), the following equation is
obtained:

% ln(\/ (cleafn, (I

g(cleafh”( ) (cleatn, (1)) -1 +%(cleaﬂz
- \/cleafh l) +1 +\/ cleafh
\/(cleaﬂz )y -1+ \/(cleafh
J(cteatn, (1)) +1+1(clearn,

+1+\/cleafh )y - J

—_

D) \(cleafn, (1)) +1

/

=| =

)
)=

_

—

/
!

+1

-1

= 2 leap, 1))

)
)

==

)
)

—

= (clean, ()"

(14)

In the case n=I of Eq. (I1), the following equation is
obtained:

% [[ (cleatn ¢)) d
= ln(\/ (cleaﬂt

(5)

+l+\/cleafh —1j—ln\/§

7.[ dt = 1n(\/cleafh + 1+ \/cleafh )— In+/2 (16)

—1+1nf In(J/cleath (1)+1+[cleafn ()—1)  (7)

l+ln

= \/cleafh + 1+ \/cleafh (18)

Therefore, the following equation is obtained:

fez = \/cleaﬂz )+ 1+ \/cleafh (110)
Using Eq. (16), the above equation represents the following
equation:

e' = cosh(/) + sinh(/) (I11)
Appendix J

The numerical data of the hyperbolic leaf function is

summarized in the table 4.
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Table 4 Numerical data of hyperbolic leaf function cleafh, (1)
(All results have been rounded to no more than five significant figures)

[ r (=cleafhn(l))
n=1 n=2 n=3 n=4 n=>5
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0200 1.0408 1.0632 1.0886 1.1193
0.4 1.0810 1.1741 1.3063 1.5978 -1.6710
0.6 1.1854 1.4425 2.2251 -1.4175 -1.0496
0.8 1.3374 1.9702 -2.2494 -1.0574 -1.0104
1.0 1.5430 3.2181 -1.3107 -1.0026 -1.2510
1.2 1.8106 9.0068 -1.0646 -1.1293 1.2736
1.4 2.1508 -11.240 -1.0000 -1.9365 1.0130
1.6 2.5774 -3.4629 -1.0617 1.3008 1.0020
1.8 3.1074 -2.0568 -1.3020 1.0340 1.5862
2.0 3.7621 -1.4842 -2.2016 1.0105 -1.1305
2.2 4.5679 -1.1959 2.2746 1.1822 -1.0001
2.4 5.5569 -1.0505 1.3151 3.2310 -1.1089
2.6 6.7690 -1.0004 1.0661 -1.2181 1.7851
2.8 8.2527 -1.0321 1.0000 -1.0172 1.0557
3.0 10.067 -1.1540 1.0603 -1.0240 1.0081
3.2 12.286 -1.4036 1.2977 -1.2523 1.2303
3.4 14.998 -1.8910 2.1787 2.3356 -1.2987
3.6 18.312 -3.0059 -2.3007 1.1565 -1.0160
3.8 22.361 -7.5141 -1.3196 1.0062 -1.0387
4.0 27.308 14.944 -1.0676 1.0043 -1.5195
4.2 33.350 3.7485 -1.0000 1.3482 1.1425
4.4 40.731 2.1519 -1.0589 -1.7507 1.0005
4.6 49.747 1.5292 -1.2935 -1.1095 1.0992
4.8 60.759 1.2192 -2.1566 -1.0007 -1.9533
5.0 74.209 1.0614 2.3276 -1.0705 -1.0623
5.2 90.638 1.0019 1.3241 -1.4881 -1.0061
54 110.70 1.0246 1.0692 1.5051 -1.2115

Note: The value of the hyperbolic leaf function with respect to the inequality / < 0 can be calculated by using the
characteristic of the even function (Eq. (19)).
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