InP(111)A 表面二重層の緩和

Relaxation of the first bilayer of InP(111)A surface

堀尾吉已*、柚原淳司**、高桑雄二***

Yoshimi Horio*, Junji Yuhara**, Yuji Takakuwa***

Summary

Surface structure of InP(111)A is investigated by reflection high-energy electron diffraction (RHEED) rocking curves and first principles calculations. In this study, we use Ar ion sputtering and low-temperature annealing as a cleaning treatment that yields a (1×1) surface structure. RHEED rocking curves reveal that the interatomic distance of the top surface bilayer reduces as if the surface were under compressive stress. We perform first principles calculations based on a 2×2 unit cell to obtain a stable structure. The calculated results suggest that the top compressed bilayer is necessary for the surface energy minimization in structures missing In (or P) atoms. Taking into account of electron counting rule, it is concluded that InP(111)A-(1×1) surface structure comprises randomly distributed In vacancies with compressed bilayer .

キーワード:反射高速電子回折、InP(111)、第一原理計算、表面構造 Keywords: RHEED, InP(111), first principles calculation, surface structure

1. はじめに

Ⅲ-V族化合物半導体の InP(111)表面はヘテロエピタ キシャル基板として、光デバイス、光集積回路、超高 速電子デバイスの形成に用いられ、ネットワーク社会 には重要な材料である。デバイスの微細化に伴い、 InP(111)の表面構造を知ることは応用的観点のみなら ず学術的観点からも重要であるが、意外とその表面構 造の詳細な報告は少ないのが現状である。

InP(111) 以外のⅢ-V族化合物半導体である GaAs(111)^{1,2}、InSb(111)^{3,4}、InAs(111)⁵、GaP(111)⁶など も電子デバイスとして用いられている。これらの表面 も極性を有し、その表面構造は組成、結晶方位、温度 などに依存して様々な表面再構成を示す。特にⅢ族元 素が表面で終端するA表面では(2×2)表面超構造が現れ ることが知られており、その構造は2倍周期で表面の Ⅲ族原子が欠如した構造として認められている。それはエレクトロンカウンティング則のを満たす再構成表面であり、残された表面のⅢ族原子に付随するダングリングボンド内の電子は全て第2層のV族原子に移動し、結合手内には2個の電子が収納されて安定化するものである。第一原理計算を用いた表面エネルギーからもⅢ族原子の欠陥モデルが最も安定した表面再構成であることが知られている。その際、表面のⅢ族原子層が第2層目のV族原子層に向かって垂直方向に圧縮された構造をとることが報告されている。

しかしながら、InP(111)表面に関しては低融点材料で あり、InP(111)の清浄表面の作成は通常の高温加熱法で は困難なためか、その表面構造についての報告は他の Ⅲ-V族化合物半導体に比べて極めて少ないのが現状と 思われる。2003年にLiらは有機金属化学気相エピタキ シー(MOVPE)により成長させた InP(111)A 面(In 原

^{*} 大同大学工学部電気電子工学科

^{**} 名古屋大学大学院工学研究科

^{***} 東北大学多元物質科学研究所

子が最表面に出る表面)において、そのアニール温度 が 400℃では(2×2)表面超構造が現れ、それより低温の 250℃のアニール温度では(√3×√3)R30°表面超構造が現 れることを走査トンネル顕微鏡(STM)と低速電子回 折を用いて観察している⁸⁾。2008年にAkiyama らはそ れらの表面再構成について *ab-initio* 計算を行い、水素原 子によりパッシベートされた表面ダングリングボンド の役割の重要性を報告している⁹。

本研究では市販の鏡面研磨された InP(111)A 面のウ エハーを Ar イオンスパッタリングと 200℃程度の低温 アニールを併用することにより InP(111)A 表面の清浄 化を試みたところ、(1×1)表面が現れた。アニール温度 を比較的高温の 500℃程度まで上げると(2×2)表面の出 現を観察したが、In ドロップレットの形成が懸念され るためここでは InP(111)A-(1×1)表面を対象とした。反 射高速電子回折 (RHEED) のロッキング曲線¹⁰⁾と第一 原理計算 ^{11,12)}からこの表面の構造解析を行ったところ、 他のⅢ-V族化合物半導体 ¹⁻⁶⁾の(111)A 表面に現れる (2×2)再構成表面と同様に、表面二重層の圧縮緩和と表 面原子の欠陥が存在することを見出したので報告する。

2. 実験方法

用いた試料は InP(111)A 面であり、市販の単結晶ウェ ハー (MTI corp.製、N型、アンドープ)を 0.5×4×15mm³ に切断して使用した。超高真空中での表面清浄化につ いては、一般に用いられる 1000℃以上の高温加熱法が 適用できない。それは、InP は低融点で高い蒸気圧を有 するためである。200℃程度の加熱から P 原子が蒸発し 始めるためか、表面には 200nm 程度の In のドロップレ ットが形成され始め、500℃程度の加熱ではそれらの合 体により数μm 程度以上のサイズに成長する様子が SEM で観察された。このように高温加熱で表面汚染物 を除去しようとすれば、表面組成や形態に変化を及ぼ す。そこで、本研究では Ar イオンスパッタリングと 200℃程度の低温アニールによって清浄化を試みた。こ のような低温加熱でもArイオンスパッタリングで荒れ た表面を修復可能であることは RHEED 図形のその場 観察から確認される。すなわち、ディフューズな回折 図形のバックグランドから整数次の回折斑点が出現し 始める様子が数秒程度の間に確認できる。これは In 及 び P 原子の比較的大きな表面拡散を示唆するものと考 えられる。アニール温度を 500℃程度に上げると(2×2) 超構造が出現する場合もあったが、その場合には同時 に In ドロップレットも形成されていることが懸念され るため、本研究では低温アニールで形成される(1×1)表 面構造を対象に実験を行った。(2×2)表面と(1×1)表面の 出現の違いがアニール温度だけによるものか、或いは 清浄化過程や清浄化の履歴、或いは真空環境にも依存 するかは判明していないのが現状である。

RHEED の入射電子エネルギーは 10keV とし、回折電 子強度の入射視射角依存性であるロッキング曲線は [11 2]対称入射方位およびそれから5.5°ずらした one-beam 入射方位で測定した。

3. 計算方法

実験で得られる回折電子のロッキング曲線と計算か ら得られるロッキング曲線とを比較することで構造モ デルを探索した。また、エネルギー的に安定構造か否 かについては第一原理計算により検証した。これら計 算の詳細については 3.1 節および 3.2 節で述べる。

3.1 回折電子強度の計算

ロッキング曲線の計算はマルチスライス動力学的理 論 ¹³⁾を用いて行った。結晶ポテンシャルは Doyle と Turner の数値 ¹⁴⁾を用いて計算し、吸収を表す虚数ポテ ンシャルは実数ポテンシャルの 10%とした。結晶を表 面平行に 0.1 Å厚でスライスして各スライス内でシュレ ーディンガー方程式を解くが、十分収束する 100 Åの深 さまで計算を実行した。格子振動を表すデバイ因子は 表面で B=2、内部は B=1 とした。考慮したロッド数は (0 0)、(±1/2 ±1/2)、(±1 ±1)、(±3/2 ±3/2)、(±2 ± 2)の 9 つである(複号同順)。ここで超格子ロッドが 4 つ含まれているが、対象とする試料は(1×1)表面のため、 超格子ロッドは関与せず、実質的に 5 つの整数次ロッ ドをのみ考慮したことになる。

3.2 第一原理計算

第一原理計算では密度汎関数理論(DFT)を用い、表面エネルギーが最も低くなる構造を探索した。使用されたソフトは VASP4.6¹¹⁾であり、この計算には電子とイオンとの相互作用を記述するため PAW 法を用い¹²⁾、計算全体は一般化勾配近似(GGA)が適用されている^{15)。} カットオフエネルギーは 400eV である。計算は 2×2 単位網内の原子を 10 bilayer まで考慮したが、表面から 6 bilayer は自由に動ける状態とし、その下の 4 bilayer はバルクの原子位置に固定した。表面の 6 bilayer 内の原子位置をいろいろ動かし、最もエネルギーの低くなる最適安定構造を求めた。

4. 実験及び計算結果と考察

対象とする試料表面は InP(111)A 面の(1×1)表面構造

であるため、面内方向の原子緩和を考えず、面直方向 のみの緩和を想定した。Fig. 1 に理想的 InP(111)A 表 面を(a)真上から、(b)真横から眺めた原子構造を示す。 Fig. 1(a)の太い矢印は実験測定した電子線の入射方位、 すなわち対称入射方位である[112]入射方位とそれか ら5.5°ずらした one beam 入射方位を示す。それぞれの 入射方位の RHEED 図形とそのシミュレーション図形 を Fig. 2(a),(b)に示す。Fig. 2(a),(b)の視斜角はそれぞれ 3.4°と3.5°である。シミュレーション図形と実験 RHEED 図形とはよく対応していることがわかる。なお計算シ ミュレーションには回折斑点のみならず、菊池線も描 かれている。また、表面波共鳴(SWR) 領域は放物線 状の帯で示されている。

Fig. 1 InP(111) surface; (a) top view, (b) side view.

Fig. 2 Experimental RHEED patterns at (a) [11-2] and (b) one beam azimuths. Insets show the calculated RHEED patterns which consist of diffraction spots, Kikuchi lines and surface wave resonance regions.

4.1 RHEED ロッキング曲線による構造解析

InP(111)A-(1×1)表面の構造解析は、 $[11\bar{2}]$ 方位と one beam 方位でのロッキング曲線の実験結果と計算結果 との比較から評価した。注目した回折強度は、 $[11\bar{2}]$ 入 射方位では鏡面反射の 00回折斑点とサイドに現れる 11回折斑点であり、one beam 入射方位では00回折斑 点である。

Fig. 1(b)に示すように、表面第1層のIn原子層の高さ を第2層のP原子層に近づけたときの計算ロッキング 曲線を実験ロッキング曲線と比較する。表面第1層の In層と第2層のP層をまとめて表面第1二重層と呼ぶ が(第1は今後略す)、ここでは構造緩和としてこの表 面二重層内の間隔(Fig. 1(b)内のdで示す間隔)を圧縮 緩和させた。すなわち、計算は緩和のない理想的表面 構造(バルク構造を切断したままの表面)の d=0.85 Å から、0.2 Å刻みで d=0.05 Åまで二重層内の間隔を縮め たときの計算結果を実験結果と比較して Fig. 3 に示す。

Fig. 3(a)は[112]入射方位の00と11回折強度のロッ キング曲線を重ねて示す。00回折強度のロッキング曲 線では電子の多重散乱の影響でブラッグ反射に対応し ない複雑なピークを示し、構造緩和の程度によりプロ ファイルはかなり変化する。なお、視射角2.6°~3.4°の 影の領域は内部平均電位を 13V と想定した11及び11 ロッドに関する SWR 領域であり、その領域端で実験の 00回折強度のロッキング曲線にピークが現れている点 が特徴的である。

構造緩和のない理想表面構造(*d*=0.85Å)は最下部に 示す実験結果を全く再現しないことがわかる。しかし ながら、*d*=0.25Åまで二重層内の間隔を縮めると比較的

Fig. 3 Calculated and experimental rocking curves at (a) [11-2] and (b) one beam azimuths.

実験結果との対応はよくなることがわかる。しかしな がら詳細に眺めれば、計算ロッキング曲線は2.5°付近の 主ピークがダブルピークになっている点で実験結果と 異なる。この相違点は表面に欠陥原子を想定すること で実験結果をよく再現できることが見出された。これ については 4.3 節で述べる。

一方、Fig. 3(b)は one beam 方位の00回折強度のロッ キング曲線を示す。図枠上部に示すブラッグ反射位置 に対応する角度で規則的なピークが現れるが、構造緩 和の程度により相対強度は変化する。333 ピークと444 ピークの強度比は *d*=0.25 Å以下で実験結果との対応は 比較的よくなるため、one beam 方位においても表面二 重層内の圧縮緩和の存在が示唆される。

4.2 第一原理計算による構造解析

Fig. 4 は第一原理計算から導かれた最適構造を示す もので、各原子層の高さ位置をバーグラフで表示した。 表面から第4二重層(8原子層)まで示されているが、 それぞれのバーの長さは2×2単位網内の原子数を示し、 欠陥がなければ4個となる。Fig. 4(a)は初期条件として 表面二重層内の間隔が*d*=0.85Åの理想表面構造である。 この欠陥のない表面の最適構造を第一原理計算から 導いたものが Fig. 4(b)である。Fig. 4(b)は初期状態の Fig. 4(a)とほとんど変化なく*d*=0.82Åとなった。ここ で図中の記号 A~Dは2×2単位網内の4つの各 In 原子 を指し、記号 E~Hは第2層の4つの各 P原子を指す。

ところが、Fig. 4(a)の最表面の In 原子を 2×2 単位網に つき 1 個抜き取った(記号 A で示される In 原子を取り

Fig. 4 (a) is depth position of surface three bilayers for bulk truncated surface. (b), (c) and (d) are energy minimized surface structures for bulk terminated, 1 In removed and 1 P removed surfaces in $2x^2$ unit, respectively, which are calculated by first principles calculation. 除いた)欠陥表面を初期条件として最適構造を求める と、Fig.4(c)に示されるように d=0.10Åの大きな圧縮緩 和が生じることがわかる。厳密には記号 H で示される P 原子は他の 3 つの P 原子よりも極僅か下がるが、ここ では主たる表面二重層内の間隔に注目する。この場合 の In の欠陥割合は 25%に相当する。

同様に表面第2層の記号Fで示されるP原子を2×2 単位網につき1個抜き取った欠陥表面、すなわちPの 欠陥割合25%を初期条件として最適構造を求めると、 Fig. 4(d)に示すように d=0.25Åとなり、やはりP欠陥の 場合も主たる表面二重層は大きく圧縮緩和されること がわかる。

このように欠陥を想定すると必ず主たる表面二重層 の間隔は圧縮緩和することがエネルギー計算から得ら れた。ここでは示していないが、このような圧縮緩和 が生じる傾向は 2×2 単位網内に 3 個の欠陥原子を想定 しても(欠陥割合 75%)同様に生じ、また 3×3 単位網 内に1個の欠陥原子を想定した場合(欠陥割合約10%) にも同様な圧縮緩和が生じることがわかった。

以上のことから、RHEED ロッキング曲線の解析から 得られた圧縮緩和が第一原理計算からもほぼ同様に支 持されることがわかった。これはロッキング曲線の解 析の信頼性を裏付けるものである。逆に、圧縮緩和が 存在することは表面欠陥が存在することを意味するた め、Fig.3に示す計算ロッキング曲線には更に欠陥割合 も考慮した解析をすべきである。これについては4.3節 で述べる。

4.3 欠陥割合を考慮した構造解析

第一原理計算から得られた圧縮緩和の値、すなわち In 欠陥の場合の d=0.10Å (Fig. 4(c)) 或いは P 欠陥の場 合の d=0.25 Å (Fig. 4(d)) を用い、欠陥割合をいろいろ 変えてロッキング曲線を計算したところ、In 欠陥及び P 欠陥いずれの表面においても[112]入射の計算ロッキ ング曲線に現れたダブルピーク (Fig. 3(a)の d=0.25 Åで の視射角2.5°付近のピーク)が実験結果のようなシング ルピークに変化することがわかった。実験ロッキング 曲線を最もよく再現する欠陥割合を探索したところ、In 欠陥表面ではその欠陥割合を 30%に、P 欠陥表面では その欠陥割合を 50%とした場合であり、それぞれの結 果を Fig. 5 と Fig. 6 に示す。いずれの原子欠陥も実験結 果を大変よく再現することがわかった。ここで、欠陥 原子が存在すればその周りの原子も当然ながら面内緩 和を受ける。しかしながら、実験 RHEED 図形が(1×1) 構造であることを考えれば、表面に存在する欠陥はラ ンダムに存在し、その周りの面内原子変位は平均化さ れて面内変位がないものと想定できる。そのため、面

内原子変位なしの計算ロッキング曲線が実験結果をよ く再現できたものと考えられる。残念ながら、このロ ッキング曲線の解析からだけで In 欠陥と P 欠陥のどち らの欠陥が実際の表面構造なのか識別は困難である。

他のⅢ-V族化合物半導体の(111)A 表面に現れる (2×2)再構成表面では 2×2 単位網あたり、1 個のⅢ族原 子が周期的に欠如することによりエレクトロンカウン ティング則^⑦を満たし、安定化することが既に報告され ている¹⁻⁶。そのような意味で InP(111)A においても In 原子の欠陥を想定することが表面の安定化をもたらす ものと考えられる。また、Fig. 5 の計算ロッキング曲線 には In の欠陥割合を 30%想定したものであり、上述の 他のⅢ-V族化合物半導体の(111)A-(2×2)表面に現れる 25%の欠陥割合と近い値になっている。

本研究では低温アニールで現れる(1×1)表面構造を解

Fig. 5 Calculated (upper) and experimental (lower) rocking curves at (a) [11-2] and (b) one beam azimuths for randomly distributed In vacancies with the vacancy ratio of 30%.

析した。低温であるが故に欠陥が2倍周期で規則的に

Fig. 6 Calculated (upper) and experimental (lower) rocking curves at (a) [11-2] and (b) one beam azimuths for randomly distributed P vacancies with the vacancy ratio of 50%.

配列するのに必要な熱エネルギーが不十分な条件であったためか、欠陥がランダムに配置した(1×1)表面の形成に留まったように考えられる。しかしながら、アニール温度を上げれば In ドロップレットの形成を促進させ、表面の平坦性や組成を変化させる危険性を伴う。

本研究で採用した Ar スパッタリングと低温アニール 法で得た表面は、Li らの MOVPE を用いた成長表面と は清浄表面の作成方法が異なるため、同一表面構造を 取らない可能性がある。Li らの報告では低温アニール では P 原子の三量体が吸着した($\sqrt{3} \times \sqrt{3}$)表面の出現が 報告されている⁸⁾が、この構造についても今後の検討課 題である。

5. まとめ

我々は InP(111)A-(1×1)表面構造を RHEED ロッキン グ曲線と第一原理計算から解析した。RHEED ロッキン グ曲線の解析から表面二重層内の間隔は 0.85 Åから 0.25 Å以下へと 0.6 Å以上の圧縮緩和が存在することを 示した。

一方、第一原理計算から表面欠陥の存在が表面第1 二重層の圧縮緩和を引き起こすことが示され、この圧 縮緩和の値はロッキング曲線の解析から得られた値と ほぼ同程度であることがわかった。ロッキング曲線の 解析において、In 欠陥の場合は d=0.1Å、欠陥割合 30% を、P 欠陥の場合は d=0.25Å、欠陥割合 50%を想定し た場合、実験結果をよく再現できることからこのよう な欠陥原子が表面にランダムに存在することが明らか になった。しかしながら In 欠陥か P 欠陥かを識別する ことはできなかった。

他の多くのIII-V族化合物半導体の(111)A-(2×2)表面 ではIII族原子の欠陥が存在し、圧縮緩和されているこ とが報告されている¹⁻⁶⁾。同様に InP(111)A-(2×2)表面に おいてもIII族原子の In の欠陥がエレクトロンカウンテ ィング則を満たすことで表面の安定化が解釈できる。 そこで、本研究で対象とした InP(111)A-(1×1)表面にお いても、P 原子ではなく In 原子が 30%程度ランダムに 欠如し、同時に表面二重層の圧縮緩和を伴っているも のと考えられる。ここでは示していないが、表面清浄 化前と清浄化後で In のオージェ電子強度が P に比べて 相対的に減少することからも示唆される。

しかしながら、500℃程度の比較的高い温度でアニー ルを施すと、P原子の脱離により相対的に表面近傍は In リッチとなり、In ドロップレットが形成されるという 事実を考えると、P欠陥が表面に存在しても不思議では ない。この点については今後の課題であるが、いずれ においても表面二重層の圧縮緩和の存在は STM 観察だ けでは分析困難であるが、本分析手法により初めてそ

謝辞

本研究の一部は物質・デバイス領域共同研究拠点に おける支援ならびに JSPS 科研費 16K04967 の助成を受 けたものであり、感謝の意を表す。

参考文献

- J. M. C. Thornton, P.Weightman, D. A. Woolf, and C. J. Dunscombe, Phys. Rev. B 51, 14459 (1995).
- A. Ohtake, J. Nakamura, T. Komura, T. Hanada, T. Yao, H. Kuramochi, and M. Ozeki, Rhys. Rev. B 64, 045318 (2001).
- 3) A. Ohtake and J. Nakamura, Surf. Sci. 396, 394 (1998).
- T. Eguchi, T. Miura, S.-P Cho, T. Kadohira, N. Naruse, and T. Osaka, Surf. Sci. **514**, 343 (2002).
- T. Taguchi and K. Kanisawa, Appl. Surf. Sci. 252, 5263 (2006).
- S. Itagaki, M. Shimomura, N. Sanada, and Y. Fukuda, e-J. Surf. Sci. Nanotech. 7, 213 (2009).
- 7) M. D. Pashley, Phys. Rev. B 40, 10481 (1989).
- C. H. Li, Y. Sun, D. C. Law, S. B. Visbeck, and R. F. Hicks, Phys. Rev. B 68, 085320 (2003).
- T. Akiyama, T. Kondo, H. Tatematsu, K. Nakamura, and T. Ito, Phys. Rev. B 78, 205318 (2008).
- A. Ichimiya, S. Kohmoto, H. Nakahara, and Y. Horio, Ultramicroscopy 48, 425 (1993).
- G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- 12) G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999)
- 13) A. Ichimiya, Jpn. J. Appl. Phys. 22, 176 (1983).
- 14) P. A. Doyle and P. S. Turner, Acta Crystallogr., Sect. A 24, 390 (1968).
- 15) J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).